5.0 REFERENCES

- ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. Designation: E 724-89.
- Berry, W.J., D.J. Hansen, J.D. Mahoney, D.L. Robson, D.M. DiToro, B.P. Shipley, B. Rogers, J.M. Corbin, and W.S. Boothman, 1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. *Environmental Toxicology and Chemistry*. 12:2067-2079.
- Bligh, E.G. and W.J. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917.
- Ho, K.T., R.A. McKinney, A. Kuhn, M.C. Pelletier, and R.M. Burgess. 1997. Identification of acute toxicants in New Bedford Harbor sediments. *Environmental Toxicology and Chemistry*. 16:551-558.
- Johnson, D.A. and B.L. Welsh, 1985. Detrimental effects of *Ulva lactula* (L.) exudates and low oxygen on estuarine crab larvae. J. Exp. Mar. Biol. Ecol. 86:73-83.
- Long, E. R., D. D MacDonald, S. L. Smith and F. D. Calder, 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environmental Management*, 19 (1): 81-97.
- Mahony, J.D., D.M. Di Toro, A.M. Gonzalez, M. Curto, M. Dilg, L.D. De Rosa and L.A. Sparrow. Partitioning of metals to sediment organic carbon. *Environmental Toxicology and Chemistry*. 15:2187-2197.
- NOAA, 1997. Raymark Industries, Inc., Superfund Site, Stratford CT: Phase II Ecological Risk Assessment. Draft. 133 pp + Appendices.
- Peterson, G.S., G.T. Ankley and E.N. Leonard, 1996. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. *Environmental Toxicology and Chemistry*. 15:2147-2155.
- SAIC, 1997. Screening evaluation of Raymark Superfund data for PRG development and proposed plan for additional studies. 13 pp. Submitted to ENSR under USACE Planning Contract No.
- Suter, G. W., 1996. Toxicological benchmarks for screening contaminants of potential concern for effect on freshwater biota. *Environmental Toxicology and Chemistry*, 15 (7): 1232-1241.

United States Environmental Protection Agency (USEPA), 1986. Quality Criteria for Water 1986. USEPA. Washington, D.C.

United States Environmental Protection Agency (USEPA), 1994. Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods. EPA/600/R-94/025.

United States Environmental Protection Agency (USEPA), 1996. Marine Toxicity Identification Evaluation (TIE), Phase I Guidance Document. EPA/600/R-096/054.

Winger, P.V. and P.J. Lasier, 1991. A Vacuum-Operated Pore-Water Extractor for Estuarine and Freshwater Sediments. *Archives of Environmental Contamination and Toxicology*. 21:321-324.

Figure 2-(.) PRG Sampling Locations in the vicinity of the Raymark Facility Superfund Site in Stratford, CT: All Stations

Draft

Figure 3.2-1. SEM concentrations (μ Mol/g dry) of divalent metals in whole sediments collected from Raymark study area. Asterisk indicate SEM-AVS > 0, hence the potential for metal-related toxicity to infauna.

Figure 3.2-2. Relationship between congener-based and homolog-based estimates of Total PCB concentrations in sediments collected from the Raymark study area.

.gure 3.4-1. SEM concentration versus bulk sedimen (.centr

Figure 3.4-2. Whole and DOC-normalized porewater (PW) concentrations versus whole and TOC-normalized sediment (SED)

Figure 3.4-3. Exposure - response relationship between amphipod survival and dioxin toxicity relative to 2378-TCDD.

Table 3.1-1. Results of *Ampelisca abdita* survival tests with bulk sediments collected from the Raymark study area.

			Surviv	al
	Ammor	ia (mg/L) ¹	Bulk Sedi	ment
Station	Total	Unionized	% Control ²	Flag ³
A3SD10	2.05	0.01	1.00	+++
CSD1	8.92	0.06	81.0	-
GM08	2.04	0.01	72.0	+
HB3A	6.43	0.11	9.00	+++
SD01	6.59	0.10	30 .0	++
SD07	26.1	0.38	79.0	+
SD08	23.8	0.20	81.0	-
SD13	18.3	0.27	33.0	++
SD14	13.4	0.16	25.0	++
SD18	7.12	0.02	62.0	+
SD21	8.43	0.08	35.0	++
SD23	6.69	0.08	40.0	++
SD24	3.65	0.05	80.0	-
SD28	15.6	0.43	79.0	+
SD37	8.51	0.11	84.0	•
BN03	6.67	0.09	87 .0	-
MF03⁴	17.8	0.21	97 .0	-
SD26⁴	8.24	0.12	100	-
SD31⁴	11.8	0.16	95 .0	-
SD33 ⁴	4.47	0.10	86 .0	-

^{1 -} Ammonia measurements from overlying water column.

High (+++) <20 %; Intermediate (++) \ge 20 and <50%; Low (+) \ge 50 and <80%; Non-toxic (-) >80%.

4 - Stations with > 85% survival not selected for further TIE analysis.

^{2 -} Survival in Long Island Sound sediment used as control response for all treatments.

^{3 -} Rankings for impacts to Ampelisca survival:

Table 3.1-2. Results of *Ampelisca abdita* survival tests with sediment porewaters collected from the Raymark study area.

					Survival	1		
		Porewater nia (mg/L)	Whole Pore	water	EDTA-Trea		C18-Treate Porewate	
Station	Total	Unionized	LC20 ² (%)	Flag ³	LC20 ² (%)	Flag ³	LC20 ² (%)	Flag ³
A3SD10	19.6	0.12	77.3	+ :	100	•	100	•
CSD1	16.5	0.33	64.3	+	70.0	+	83 .3	-
GM08	12.3	0.06	80 .0	-	100	-	100	-
HB3A	16.0	0.13	6 6 .7	+	60.0	+	22.7	++
SD01	34.3	0.30	40.0	++	60.0	+	55.6	+
SD07	31.4	0.64	60 .0	+	62.5	+	83.3	
SD08	29.3	0.36	43.5	++	60 .0	+	60.0	+
SD13	37.0	0.41	60 .0	+	60.0	+	60.0	+
SD14	27.4	0.27	60.0	+	55.6	+	60.0	+
SD18	44.1	0.09	25.0	++	18.0	+++	18.0	+++
SD21	35.6	0.28	60.7	+	60.0	+	60.0	+
SD23	23.5	0.51	60 .0	+	60.0	+	60.0	+
SD24	23.3	0.37	51.7	+	61.1	+	60.0	+
SD28	23.0	0.51	100	•	100	-	100	•
SD37	49.6	0.80	28.1	++	57.9	+	55.0	+

Shaded values indicate ≥ 10% change from whole porewater response.

High (+++) <20 %; Intermediate (++) \geq 20 and <50%; Low (+) \geq 50 and <80%; Non-toxic (-) >80%.

^{1 -} Control value for experiment, assumed for all treatments, is 0% porewater.

^{2 -} Lethal Concentration - 20% (concentration of porewater causing 20% reduction in survival).

^{3 -} Rankings for impacts to Ampelisca survival:

Table 3.1-3. Results of *Ampelisca abdita* survival tests with aerated and non-aerated sediment porewaters collected from the Raymark study area.

		Sı	ırvıval	
	Non-Aerated P	orewater	Aerated Porew	ater
Station	% Control ²	Flag ³	% Control ²	Flag ³
A3SD10	100	•	100	•
CSD1	100	· -	100	•
GM08	100	· -	100	-
НВ3А	0.00	+++	0.00	+++
SD01	0.00	+++	0.00	+++
SD07	90.0	-	0.00	+++
SD08	80.0	-	80.0	•
SD13	30.0	++	10.0	+++
SD14	10.0	+++	0.00	+++
SD18	0.00	+++	0.00	+++
SD21	20.0	++	10.0	+++
SD23	0.00	+++	0.00	+++
SD24	80.0	-	0.00	+++
SD28	80.0	-	100.0	•
SD37	40.0	++	0.00	+++

Shaded values indicate ≥ 10% change from non-aerated porewater response.

- 1 Ammonia measurements from overlying water column.
- 2 Survival in Long Island Sound sediment used as control response for all treatments.
- 3 Rankings for impacts to Ampelisca survival:

High (+++) <20 %; Intermediate (++) \ge 20 and <50%; Low (+) \ge 50 and <80%; Non-toxic (-) >80%.

Table 3.1-4. Results of *Mulinia* la: development test. It sediment porewater the Raymark study area.

				Norma	i Larvai Deveid	opment		
	Whole I	Porewater			EDTA-Trea	ited	C18-Trea	tea
	Ammor	nia (mg/L)	Whole Porew	ater	Porewate	er	Porewat	er
Station	Total	Unionized	EC20 ² (%)	Flag ³	EC20 ² (%)	Flag ³	EC20 ² (%)	∂lag³
A3SD10	19.6	0.12	0.41	+++	17.0	++	2.05	+++
CSD1	16.5	0.33	11.7	++	11.2	++	2.46	+++
GM08	12.3	0.06	14.8	++	58 .0	+	15.9	++
нвза	16.0	0.13	8.26	+++	16.9	++	18.0	++
SD01	34.3	0.30	9.21	+++	15.9	++	18 .0	++
SD07	31.4	0.64	7.20	+++	17.2	++	2.63	+++
SD08	29.3	0.36	3.20	+++	2.71	+++	3.09	+++
SD13	37.0	0.41	20.7	++	17.8	++	16.7	++
SD14	27.4	0.27	13.8	++	15.9	++	17.4	++
SD18	44.1	0.09	1.25	+++	2.00	+++	20.6	++
SD21	35.6	0.28	7.58	+++	15.2	++	16.9	++
SD23	23.5	0.51	31.3	++	12.1	++	49.2	+
SD24	23.3	0.37	14.9	++	21.1	++	45.7	+
SD28	23.0	0.51	55.7	+	55.7	+	46.8	+
SD37	49.6	0.80	7.39	+++	10.7	++	10.5	++

Shaded values indicate ≥ 10% change from whole porewater response.

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 3 Rankings for impacts to Mulinia normal larval development:

High (+++) <10 %; Intermediate (++) ≥10 and <40%; Low (+) ≥40 and <70%; Non-toxic (-) ≥70%.

Table 3.1-5. Results of *Ampelisca abdita* survival and *Mulinia lateralis* larval development tests with *Ulva lactula* treated porewater collected from the Raymark study area.

			ULVA	treated P	orewater Toxicity ¹	
	Ammoi	nia (mg/L)	Amphipod Sur	vival	Bivalve Develop	nent
Station	Total	Unionized	96-H LC20 (%) ²	Flag ³	48-H EC20 (%) ⁴	Flag⁵
A3SD10	1.38	0.01	100	•	1.25	+++
CSD1	0.47	0.03	100	-	2.67	+++
GM08	0.12	0.00	100	-	1.25	+++
HB3A	1.55	0.03	24.0	++	1.25	+++
SD01	1.11	0.03	72.8	+	2.14	+++
SD07	1.88	0.09	100	-	1.64	+++
SD08	0.53	0.03	100	-	11.1	++
SD13	0.70	0.02	100	-	10.8	++
SD14	1.50	0.04	43.6	++	10.3	++
SD18	4.20	0.09	20.0	+++	5.91	+++
SD21	1.00	0.04	46.9	++	1.25	+++
SD23	2.82	0.04	100	-	0.38	+++
SD24	0.86	0.03	100	•	2.78	+++
SD28	0.86	0.04	100	-	13.8	++
SD37	3.00	0.11	100	-	2.24	+++

Shaded values indicate ≥ 10% change from whole porewater response.

- 1- See Appendix B-4 for toxicity data.
- 2 Lethal Concentration 50% (concentration of porewater causing 50% mortality in test species).
- 3 Rankings for Ampelisca survival:

High (+++) < 20 %; Intermediate (++) < 50%; Low (+) < 80%; Non-toxic (-) \geq 80%.

- 4 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 3 Rankings for impacts to Mulinia normal larval development:

High (+++) <10 %; Intermediate (++) ≥10 and <40%; Low (+) ≥40 and <70%; Non-toxic (-) ≥70%.

Table 3.2-1. Summary of sediment chemistry for the Raymark study area. HQ benchmark = ER-M reference data.

01	Analyte		A3SD10			CSD1			GM08			НВ3А			SD01			SD07	
Class	Analyte	Conc ¹	HQ2	Rank ³	Conc	HQ ²	Rank ³	Conc	HQ2	Rank ³	Conc ¹	HQ²	Rank ³	Conc ¹	HQ2	Rank ³	Conc ¹	HQ ²	Rank ³
Metals	Silver	2.00	0.54	-	3 00	0.81	-	3.00	0.81	-	2.40	0.65	-	1.40	0.38	-	1.50	0 41	-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Arsenic	23.9	0.34	_	112	0.16	-	17.9	0 26	-	9 20	0.13		7.00	0.10	-	10.60	0.15	-
i	Cadmium	8 30	9.2E-3	-	1.20	1.3E-3	-	1 50	1.7E-3	-	1 00	1.1E-3	-	5.50	6 1E-3	-	4.40	4.9E-3	-
	Chromium	463	1.25	+	402	1.09	+	231	0.62	-	290	0.78	- 1	89.7	0.24	- '	99.9	0.27	-
	Copper	2550	9.44	++	1350	5 00	++	661	2.45	++	36400	135	+++	1650	6.11	++	430	1.59	+
	Mercury	0.43	0.61	_	0.77	1.08	+	1.20	1.69	 + '	0.47	0 66	- '	0.22	0.31	-	0.32	0 45	- '
	Nickel	317	6.14	++	54 0	1.05	+	37.4	0.72	-	386	7 48	++	807	1.56	+	49.2	0 95	-
	Lead	3290	15.1	+++	703	3 22	++	158	0.72	-	26500	122	+++	1570	7.20	++	403	1 85	+
ļ	Zinc	1340	3 27	++	399	0 97	_	292	0.71		2320	5 66	++	750	1.83	+	508	1 24	+
	Metals Hazard Index ⁴	1040	36.7			13.4	1		7.99			272			17.7	l		6 92	
DALLE	2-Methylnaphthalene	1000	1.49	+	660	0.99	-	660	0.99	_	660	0 99	-	710	1.06	+	650	0.97	-
FAIIS	Acenaphthene	1000	2.00		660	1.32	+	660	1.32	+	660	1.32	+	140	0.28	-	160	0.32	-
	Acenaphthylene	190	0.30	١.	200	0.31	-	660	1.03	+	660	1.03	+	350	0.55	-	330	0.52	
	Anthracene	120	0.11	_	190	0.17		660	0.60		660	0.60	-	520	0.47	-	520	0.47	-
	Benzo(a)anthracene	1500	0.94		560	0.35	-	190	0.12	-	660	0.41	-	2500	1.56	+	2700	1.69	+
	Benzo(a)pyrene	1700	1 06		660	0.41	-	230	0.14		120	0.08	-	2400	1.50	+	2200	1.38	+
	Chrysene	2800	1 00	_	850	0 30	-	400	0.14		180	0 06	-	4000	1.43	+	4000	1.43	+
	Dibenz(a,h)anthracene	260	1 00		190	0 73	_	74 0	0.28	-	660	2 54	++	460	1.77	+	530	2.04	++
	Fluoranthene	950	0.19	_	470	0.09	_	390	0.08	-	660	0.13	-	1400	0.27	-	4200	0 82	-
	Fluorene	1400	2 59	++	730	1 35	+	220	0.41	-	1100	2 04	++	3800	7 04	++	3900	7 22	**
	Naphthalene	240	0 11	_	660	0.31	_	660	0.31	-	660	0.31	-	430	0 20	-	520	0 25	-
	Phenanthrene	4500	3.00	++	1200	0 80	_	330	0.22	-	280	0.19	-	5600	3 73	++	4500	3.00	++
l	Pyrene	1000	0.38		660	0 25	_	660	0.25	.	660	0 25	-	190	0.07	-	260	0.10	
	PAH Hazard Index ⁴		14.2]	1	7.40			5.90			9.95			19.9	1		20 2	
PCBs	Total PCBs	27081	150	+++	6006	33 4	+++	247	1.37	+	317183	1762	+++	20718	115	+++	2355	13.1	+++
. 553	Sum of Aroclors ⁵							ł		1	39526	-					1760]	
PSTs	p,p'-DDE	1		1		1		1			3.60	0.13					7.20	0.27	<u> </u>

^{1 -} Concentration units: metals = μg/g dry weight; PAHs, PCBs, pesticides = ng/g dry weight. See Appendix A-1-1 for sediment concentrations.

^{2 -} Hazard Quotients calculated as sediment concentration/ER-M benchmark (Long et al., 1995).

^{3 -} HQ Ranking: ":" = HQ<1; "+" = HQ>1; "++" = HQ>2; "+++" = HQ>10.

^{4 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

^{5 -} ER-M benchmarks not available for these analytes. Rankings reflect concentrations as follows: "-" = <100 ng/g; "++" = >100 ng/g; "++" = >1000 ng/g; "++" = >1000 ng/g; "++" = >1000 ng/g; "++" = >10000 ng/g

Table 3.2-1 (continued). Summary of sediment chemistry for the Raymark study area. HQ benchmark = ER-M reference data.

	A 1 - 4		SD08			SD13			SD14			SD18			SD21		١.,	SD23	i 3
Class	Analyte	Conc	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³
			0.38	Naik	1.40	0.38		0.88	0.24		0.44	0.12	-	0.54	0.14	-	0.93	0.25	-
Metals		1.40	0.36		9.00	0.13		9.20	0.13	_	3 70	0.05		3.90	0.06	-	8.80	0.13	-
	Arsenic	6.50	1.5E-3		7 60	8.4E-3	_	7 60	8.4E-3		0.80	8.8E-4	-	3 20	3.5E-3	-	6 30	7.0E-3	-
İ	Cadmium	1.40			91.5	0.25	_	116	0.31	-	318	0.09	-	37.3	0.10	-	917	0 25	-
	Chromium	84.4	0.23		890	3.30	++	775	2.87	++	271	1 00	+	188	0.70	-	462	1.71	+
	Copper	232	0 86	-	0 28	0.39		0.49	0.69	_	0 16	0.23	-	0.16	0.22		0 28	0.39	-
	Mercury	0.37	0.52	-	59 1	1.15	,	86.3	1.67		20 8	0.40		22.6	0.44	-	52 1	1.01	+
	Nickel	37.1	0.72	-	934	4.28		833	3.82	++	357	1 64	+	249	1.14	+	514	2.36	**
	Lead	181	0.83	-	671	1.64	\ ``	676	1.65	+	181	0.44	٠.	274	0.67	-	525	1.28	+
	Zinc	290	0.71	-	0/1	11.5	ľ	1 0,0	11.4			3.97		1	3.46		l	7.39	
	Metals Hazard Index*		4.34	İ	4000	1 49		1700	2.54	++	610	0.91		615	0.92		990	1.48	
PAHs	2-Methylnaphthalene	660	0.99	-	1000	0.40	l .	200	0.40	'	610	1.22	.	85.0	0.17	_	160	0.32	-
	Acenaphthene	660	1.32	+	200		-	440	0.69		140	0 22		165	0.26		340	0 53	-
	Acenaphthylene	130	0.20		410	0.64	•	640	0.58		250	0.23	_	305	0.28] -	570.	0.52	-
	Anthracene	140	0.13	-	680	0.62	1 -	3800	2.38	++	800	0.50	_	1450	0.91	-	2900	1.81	+
	Benzo(a)anthracene	670	0.42	-	4000	2.50	**	3600	2.25	++	790	0.49		1400	0.88		2900	1.81	+
	Benzo(a)pyrene	640	0.40	-	4000	2.50	++	9200	3.29	++	1200	0 43		2000	0.71		4500	1.61	+
	Chrysene	1000	0.36	-	10000	3 57	'	1000	3.85	**	320	1 23	1 +	345	1.33	+	940	3.62	++
	Dibenz(a,h)anthracene	190	0.73	-	1100	4 23	++	8400	1.65	``	600	0.12		895	0.18	_	1800	0.35	-
	Fluoranthene	380	0.07	-	9100	1.78	!	4800	8.89	;	1100	2 04	++	1950	3.61	++	4400	8 15	++
,	Fluorene	990	1.83	+	5300	9.81	++	550	0.26	1	160	0.08	'.'	270	0.13	1 -	550	0 26	-
1	Naphthalene	120	0.06	i -	610	0.29	l -	1	7.33		1500	1.00	\ _	3450	2.30	++	7900	5.27	++
1	Phenanthrene	1500	1.00	-	11000	7.33	++	11000	,		75.0	0.03		140	0.05	_	220	0.08	_
l	Pyrene	660	0.25	-	220	0.08	-	360	0.14	-	1 '30	8 49		'''	11.7		3	25.8	
	PAH Hazard Index ⁴		7.76			35.3		4640			2428	13.49	+++	1268	7 04	**	4119	22.88	+++
PCBs	I .	967	5.37	++	8661	48 1	+++	4642	25.79	***	4428	13.49	'''	954	' ' ' '		1		
]	Sum of Aroclors ⁵	1			1							1	1	5.40	0.20			İ	
PSTs	p,p'-DDE				<u> </u>	<u> </u>	<u> </u>	Ue DCB	!	<u> </u>	٠	<u> </u>	ــــــــــــــــــــــــــــــــــــ	A-1-1 for	<u> </u>		.l		-!

^{1 -} Concentration units: metals = μg/g dry weight; PAHs, PCBs, pesticides = ng/g dry weight. See Appendix A-1-1 for sediment concentrations.

^{2 -} Hazard Quotients calculated as sediment concentration/ER-M benchmark (Long et al., 1995).

^{3 -} HQ Ranking: "-" = HQ<1; "+" = HQ>1; "++" = HQ>2; "+++" = HQ>10.

^{4 -} Hazard Index calculated as sum of analyte-specific Hazard Quolients.

^{5 -} ER-M benchmarks not available for these analytes. Rankings reflect concentrations as follows: "-" = <100 ng/g; "+" = >100 ng/g; "++" = >1000 ng/g; +++ = >10000 ng/g.

Table 3.2-1 (continued). Summary of sediment chemistry for the Raymark study area. HQ benchmark = ER-M reference data.

Class	Analyte	Ī	SD24	-		SD28			SD37	
		Conc ¹	HQ ²	Rank ³	Conc ¹	HQ2	Rank ³	Conc ⁱ	HQ ²	Rank ³
Metals	Silver	0.62	0.17	-	1.60	0.43	-	0.60	0.16	-
	Arsenic	8.20	0.12	-	8.10	0 12	-	4 50	0.06	
	Cadmium	2.60	2.9E-3	-	4.20	4.6E-3	-	0.51	5.6E-4	-
	Chromium	97.4	0.26	-	107	0.29	-	59.2	0.16	-
	Copper	383	1.42	+	361	1.34	+	173	0.64	
	Mercury	0.28	0.39	-	0.27	0.38	-	0.17	0.24	
	Nickel	63 3	1.23	+	43.4	0.84	-	21.0	0.41	
	Lead	506	2.32	++	303	1.39	+	42.3	0.19	-
	Zinc	363	0.89	-	439	1 07	+	171	0.42	-
	Metals Hazard Index ⁴		6.80			5.86			2.29	
PAHs	2-Methylnaphthalene	660	0.99	-	1000	1 49	+	570	0.85	-
	Acenaphthene	660	1.32	+	1000	2.00	+	570	1.14	+
	Acenaphthylene	110	0.17	- ,	200	0.31	-	84.0	0.13	-
	Anthracene	150	0.14	-	300	0.27	-	120	0.11	-
	Benzo(a)anthracene	890	0.56	-	1700	1.06	+	430	0.27	-
	Benzo(a)pyrene	960	0.60	•	1900	1.19	+	470	0.29	-
	Chrysene	1600	0.57	-	3400	1.21	+	900	0.32	_
	Dibenz(a,h)anthracene	310	1.19	+	600	2.31	++	150	0.58	
	Fluoranthene	670	0.13		1100	0.22	-	820	0.16	_
	Fluorene	1200	2.22	++	2300	4 26	++	540	1.00	-
	Naphthalene	160	0.08	-	310	0.15	- 1	570	0.27	_
	Phenanthrene	2400	1.60	+	4900	3.27	++	860	0.57	-
	Pyrene	83.0	0.03	. [130	0.05	-	570	0.22	-
	PAH Hazard Index ⁴		9.60	1		17.8	ļ		5.92	
PCBs	Total PCBs	4865	27.03	+++	2383	13.24	+++	104.5	0.58	
	Sum of Aroclors ⁵					ĺ				
PSTs	p.p'-DDE		1	J	ĺ		ļ			

Table 3.2-2. Summary of porewater chemistry for the Raymark study area.

Class	Analyte		A3SD10)		CSD1			GM08			НВ3А		I	SD01	
		Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³
Metals	Silver	0.00	0.00	-	0.00	0.00	-	0.00	0.00		0.00	0.00	-	0.00	0.00	
	Arsenic	19.9	0.55	-	58.7	1.63	+	20.1	0.56	-	33.5	0.93	-			
	Cadmium	5.60	0.16	-	3.68	0.10	-	0.17	4.7E-3	-	3.17	8.8E-2	_	2.83	7.9E-2	
	Chromium	1.47	2.9E-2	-	2.64	5.3E-2	-	1.69	3.4E-2	-	0.84	1.7E-2	_	3.24	6.5E-2	i
	Copper	65.0	3.17	++	71.0	3.46	++	55.0	2.68	++	599	29.2	+++	112	5.46	++
	Nickel	244	0.10	-	14.2	5.9E-3	-	32.0	1.3E-2	-	112	4.7E-2	-	27.3	1.1E-2	_
	Lead	1.40	4.6E-4	-	1.44	4.8E-4	-	1.56	5.2E-4		13.2	4.4E-3	-	2.80	9.3E-4	_
	Zinc	1540	4.49	++	260	0.76	-	420	1.22	+	170	0.50		170	0.50	_
	Metals Hazard Index ⁴		8.50			6.01			4.52			30.8			6.12	
PAHs	PAH Hazard Index ⁴	-										, , ,			0.12	
PCBs	Total PCBs				1093	27.3	+++									

^{1 -} Concentration units: μg/L. See Appendix A-1-2 for porewater concentrations.

^{2 -} Hazard Quotients calculated as sediment concentration/WQSV benchmark (see Appendix A-2-2).

^{3 -} HQ Ranking: "-" = HQ<1; "+" = HQ>1; "++" = HQ>2; "+++" = HQ>10.

^{4 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

Table 3.2-2 (continued). Summary of porewater chemistry for the Raymark study area.

Class	Analyte	1	SD07			SD08			SD13			SD14			SD18	
Class	, way to	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ²	Rank ³
Metals	Silver	0.00	0.00	-	0.00	0.00	•	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-
11101010	Arsenic	95.2	2.64	++	80.8	2.24	++	73.6	2.04	++	17.5	0.49	-	15.7	0.22	-
	Cadmium	3.86	0.11	-	1.60	4.4E-2	-	2.78	7.7E-2	-	3.27	9.1E-2	-	3.45	1.8E-2	-
	Chromium	1.05	2.1E-2	-	Į			2.81	5.6E-2	-	3.14	6.3E-2	-	1.33	3.8E-2	-
	Copper	54.0	2.63	++	32.0	1.56	+	46.0	2.24	++	48.0	2.34	++	52.0		
	Nickel	15.3	6.4E-3	_	41.0	1.7E-2	-	4.00	1.7E-3	-	31.0	1.3E-2	-	16.4	5.3E-3	-
l	Lead	0.75	2.5E-4	-	1.72	5.7E-4	-	0.75	2.5E-4	· -	3.56	1.2E-3	-	1.96	3.3E-4	-
1	Zinc	150	0.44	-	200	0.58	-	140	0.41	-	270	0.79	-	130	0.12	-
	Metals Hazard Index4		5.85	Ĺ		4.45			4.8			3.78			0.40	
PAHs	PAH Hazard Index ⁴	1			1	İ			40.4	+++]			
1	Total PCBs	2084	52.1	+++	2000	50.0	+++	504	12.6	+++	<u> </u>	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>

^{1 -} Concentration units: μg/L. See Appendix A-1-2 for porewater concentrations.

^{2 -} Hazard Quotients calculated as sediment concentration/WQSV benchmark (see Appendix A-2-2).

^{3 -} HQ Ranking: "-" = HQ<1; "+" = HQ>1; "++" = HQ>2; "+++" = HQ>10.

^{4 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

Table 3.2-2 (continued). Summary of porewater chemistry for the Raymark study area.

Class	Analyte		SD21			SD23			SD24			SD28			SD37	
		Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³	Conc ¹	HQ ²	Rank ³
Metals	Silver	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-
	Arsenic	12.0	0.33	-	34.6	0.96	-	11.8	0.33	-	19.1	0.53	-	18.0	0.50	-
	Cadmium	3.41	9.5E-2	-	3.33	9.2E-2	-	2.80	7.8E-2	-	3.71	0.10	-	2.95	8.2E-2	-
	Chromium	0.67	1.3E-2	-	3.24	6.5E-2	-	2.36	4.7E-2	-						
	Copper	50.5	2.46	++	35.0	1.71	+	41.0	2.00	+	55.0	2.68	++	54.0	2.63	++
	Nickel	15.0	6.3E-3	-	9.50	4.0E-3	-	14.9	6.2E-3	-	7.40	3.1E-3	-			
	Lead	2.26	7.5E-4	-	3.92	1.3E-3	-	4.40	1.5E-3	-•	2.76	9.1E-4	-	8.96	3.0E-3	-
	Zinc	115	0.34	-	60.0	0.17	-	50.0	0.15	-	260	0.76	-	50.0	0.15	
	Metals Hazard Index		3.25			3.01			2.61			4.08			3.37	
PAHs	PAH Hazard Index ⁴				ĺ											
PCBs	Total PCBs				1144	28.6	+++				2212	55.3	+++			

^{1 -} Concentration units: μg/L. See Appendix A-1-2 fo 1 - Concentration units: μg/L. See Appendix A-1-2 for porewater concentrations.

^{2 -} Hazard Quotients calculated as sediment concentration/WQSV benchmark (see Appendix A-2-2).

^{3 -} HQ Ranking: "-" = HQ<1; "+" = HQ>1; "++" = HQ>2; "+++" = HQ>10.

^{4 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

Table 3.4-1. Exposure-response analysis for porewater-related CoC toxicity: A) Ampelisca.

		ſ		Int	terstitial Wa	ter Toxic	Units (100%	Porewate	r Conc./LC	50)	
	To	xicity			Metals				Organics		
Station	EC20%	Tox-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣIWTU _{PW}	PCBs	PAHs	ΣIWTU _{PW}	NH₄-TOT
SD18	25.0	1	0.2	0.0	0.0	0.1	0.4	0.0	0.0	0.0	1.5
SD37	28.1	ı	0.5	0.1	2.6	0.1	3.4	0.0	0.0	0.0	1.7
SD01	40.0	1	0.0	0.1	5.5	0.5	6.0	0.0	0.0	0.0	1.1
SD08	43.5	ı	2.2	0.0	1.6	0.6	4.4	50.0	0.0	50.0	1.0
SD24	51.7	L	0.3	0.1	2.0	0.1	2.6	0.0	0.0	0.0	0.8
SD07	60.0	L	2.6	0.1	2.6	0.4	5.8	52.1	0.0	52.1	1.0
SD13	60.0	L	2.0	0.1	2.2	0.4	4.8	12.6	0.0	12.6	1.2
SD14	60.0	L	0.5	0.1	2.3	0.8	3.7	0.0	0.0	0.0	0.9
SD23	60.0	L	1.0	0.1	1.7	0.2	2.9	28.6	0.0	28.6	0.8
SD21	60.7	L	0.3	0.1	2.5	0.3	3.2	0.0	0.0	0.0	1.2
CSD1	64.3	L	1.6	0.1	3.5	0.8	6.0	27.3	0.0	27.3	0.5
НВЗА	66.7	L	0.9	0.1	29.2	0.5	30.7	0.0	0.0	0.0	0.5
A3SD10	77.3	L	0.6	0.2	3.2	4.5	8.4	0.0	0.0	0.0	0.7
GM08	80.0	N	0.6	0.0	2.7	1.2	4.5	0.0	0.0	0.0	0.4
SD28	100	N	0.5	0.1	2.7	0.8	4.1	55.7	0.0	63.2	0.8
Threshold E	ffects Quo	tient ¹	1.0	1.0	2.7	1.2	4.5	55.7	1.0	63.2	1.0
% > TEQ				0.0%	30.8%	7.7%	46.2%	0.0%	0.0%	0.0%	23.1%

High (H) <20 %; Intermediate (I) ≥20 and <50%; Low (L) ≥50 and <80%; Non-toxic (N) >80%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-1 (continued). Exposure-response analysis for porewater-related CoC toxicity: B) Mulinia.

				In	terstitial Wa	ater Toxic I	Units (100%	Porewate	r Conc./LC	50)	
	To	xicity			Metals				Org	anics	
Station	EC20%	Tox-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣIWTU _{PW}	PCBs	PAHs	ΣIWTU _{PW}	NH₄-TOT
A3SD10	0.41	Н	0.6	0.2	3.2	4.5	8.4	0.0	0.0	0.0	1.5
SD18	1.25	н	0.2	0.0	0.0	0.1	0.4	0.0	0.0	0.0	3.3
SD08	3.20	н	2.2	0.0	1.6	0.6	4.4	50.0	0.0	50.0	2.2
SD07	7.20	Н	2.6	0.1	2.6	0.4	5.8	52.1	0.0	52.1	2.3
SD37	7.39	Н	0.5	0.1	2.6	0.1	3.4	- 0.0	0.0	0.0	3.7
SD21	7.58	н	0.3	0.1	2.5	0.3	3.2	0.0	0.0	0.0	2.7
НВЗА	8.26	н	0.9	0.1	29.2	0.5	30.7	0.0	0.0	0.0	1.2
SD01	9.21	Н	0.0	0.1	5.5	0.5	6.0	0.0	0.0	0.0	2.6
CSD1	11.7	1	1.6	0.1	3.5	0.8	6.0	27.3	0.0	27.3	1.2
SD14	13.8	i	0.5	0.1	2.3	0.8	3.7	0.0	0.0	0.0	2.0
GM08	14.8	ı	0.6	0.0	2.7	1.2	4.5	0.0	0.0	0.0	0.9
SD24	14.9	1	0.3	0.1	2.0	0.1	2.6	0.0	0.0	0.0	1.7
SD13	20.7	1	2.0	0.1	2.2	0.4	4.8	12.6	0.0	12.6	2.8
SD23	31.3	1	1.0	0.1	1.7	0.2	2.9	28.6	0.0	28.6	1.8
SD28	55.7	L	0.5	0.1	2.7	0.8	4.1	55.7	0.0	55.7	1.7
Threshold Ef	fects Quo	tient ¹	1.0	1.0	2.7	1.0	4.1	55.7	1.0	55.7	1.8
% > TEQ			28.6%	0.0%	28.6%	14.3%	57.1%	0.0%	0.0%	0.0%	57.1%

High (H) <10 %; Intermediate (I) ≥10 and <40%; Low (L) ≥40 and <70%; Non-toxic (N) ≥70%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-2. Exposure-response analysis for C18-treated (e.g., metals-related) porewater: A) Ampelisca.

		F	lı	nterstitial Water To	xic Units (100% Po	orewater Conc./LC	50)
	Tox	icity			Metals		
Station	EC20% 1	OX-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣIWTU _{PW}
SD18	18.0	Н	0.06	0.03	0.00	0.20	0.29
нвза	22.7	1	0.03	0.14	4.10	0.67	4.95
SD37	55.0	L	0.15	0.16	1.51	0.17	2.00
SD01	55.6	Ł	0.00	0.09	0.73	0.50	1.32
SD08	60.0	L	1.61	0.16	0.93	0.26	2.96
SD13	60.0	L	0.15	0.10	1.02	0.35	1.63
SD14	60.0	L	0.00	0.13	0.88	0.41	1.41
SD21	60.0	L	0.04	0.12	0.54	0.22	0.91
SD23	60.0	L	0.28	0.13	1.37	0.12	1.90
SD24	60.0	L	0.00	0.10	0.88	0.15	1.13
CSD1	83.3	N	1.14	0.24	0.93	0.29	2.59
SD07	83.3	N	1.77	0.15	1.46	0.20	3.58
A3SD10	100	N	0.02	0.26	1.12	7.00	8.40
GM08	100	N	0.06	0.18	1.37	1.49	3.09
SD28	100	N	1.47	0.26	1.27	0.20	3.20
Threshold E	ffects Quotic	ent ¹	1.77	1.00	1.46	7.00	8.40
% > TEQ			0.0%	0.00%	20.0%	0.00%	0.00%

High (H) <20 %; Intermediate (I) ≥20 and <50%; Low (L) ≥50 and <80%; Non-toxic (N) >80%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-2 (continued). Exposure-response analysis for C18-treated (e.g., metals-related) porewater: B) Mulinia.

				nterstitial Water To	xic Units (100% Po	prewater Conc./LC	50)
	To	xicity			Metals		
Station	EC20%	TOX-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣΙWTU _{PW}
A3SD10	2.05	Н	0.02	0.26	1.12	7.00	8.40
CSD1	2.46	н	1.14	0.24	0 93	0.29	2.59
SD07	2.63	н	1.77	0.15	1.46	0.20	3.58
SD08	3.09	H	1.61	0.16	0.93	0.26	2.96
SD21	16.9	1	0.04	0.12	0.54	0.22	0.91
SD37	10.5	1	0.15	0.16	1.51	0.17	2.00
GM08	15.9	1	0.06	0.18	1.37	1.49	3.09
SD13	16.7	1	0.15	0.10	1.02	0.35	1.63
SD14	17.4	1	0.00	0.13	0.88	0.41	1.41
НВЗА	18.0	1 1	0.03	0.14	4.10	0.67	4.95
SD01	18.0	1	0.00	0.09	0.73	0.50	1.32
SD18	20.6	ı	0.06	0.03	0.00	0.20	0.29
SD24	45.7	Ĺ	0.00	0.10	0.88	0.15	1.13
SD28	46.8	L	1.47	0.26	1.27	0.20	3.20
SD23	49.2	L.	0.28	0.13	1.37	0.12	1.90
Threshold E	fects Quot	ient ¹	1.47	1.00	1.37	1.00	3.20
% > TEQ			16.7%	0.00%	25.0%	16.7%	25.0%

High (H) <10 %, Intermediate (I) \geq 10 and <40%; Low (L) \geq 40 and <70%; Non-toxic (N) \geq 70%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-3. Exposure-response analysis for **EDTA-treated** (e.g., organics-related) porewater: A) *Ampelisca*.

		ĺ	Interstitial Water To	oxic Units (100% Por	ewater Conc./LC ₅₀)
	To	cicity		Organics	
Station	EC20%	Tox-GRP ²	PCBs	PAHs	ΣΙWTU _{PW}
SD18	18.0	Н	0.00	0.00	0.00
SD14	55.6	1	0.00	0 00	0.00
SD37	57. 9	i	0.00	0.00	0.00
НВЗА	60.0	1	0.00	0.00	0.00
SD01	60.0	i	0.00	0.00	0.00
SD08	60.0	1	0.32	0.00	0.32
SD13	60.0	1	3.74	0.00	3.74
SD21	60.0	1	0.00	0.00	0.00
SD23	60.0	1	1.58	0 00	1.58
SD24	61.1	i	0.00	0.00	0.00
SD07	62.5	1	0.00	0.00	0.00
CSD1	70.0	ı	0.00	0.00	0.00
SD28	100	N	0.00	0.00	0.00
A3SD10	100	N	0.00	0.00	0.00
GM08	100	N	0.00	0.00	0.00
	Threshold Effe	ects Quotient ¹	1.00	1.00	1.00
		% > TEQ	16.7%	0.00%	16.7%

High (H) <20 %; Intermediate (I) ≥20 and <50%; Low (L) ≥50 and <80%; Non-toxic (N) >80%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-3 (continued). Exposure-response analysis for EDTA-treated (e.g., organics-related) porewater: B) *Mulinia*.

			Interstitial Water T	oxic Units (100% Por	ewater Conc./LC ₅₀)
	To	kicity		Organics	
Station	EC20%	Tox-GRP ²	PCBs	PAHs	ΣΙWTU _{PW}
SD18	2.00	Н	0.00	0.00	0.00
SD08	2.71	н	0.32	0.00	0.32
SD37	10.7	н	0.00	0.00	0.00
CSD1	11.2	i	0.00	0.00 -	0.00
SD23	12.1	1	1.58	0.00	1.58
SD21	15.2	1	0.00	0.00	0.00
SD01	15.9	1	0.00	0.00	0.00
SD14	15.9	1	0.00	0.00	0.00
HB3A	16.9	1	0.00	0.00	0.00
A3SD10	17.0	ı	0.00	0.00	0.00
SD07	17.2	1	0.00	0.00	0.00
SD13	17.8	1	3.74	0.00	3.74
SD24	21.1	1	0.00	0.00	0.00
SD28	55.7	Ĺ	0.00	0.00	0.00
GM08	58.0	L	0.00	0.00	0.00
	Threshold Effe	cts Quotient ¹	1.00	1.00	1.00
		% > TEQ	15.4%	0.00%	15.4%

High (H) <10 %; Intermediate (I) ≥10 and <40%; Low (L) ≥40 and <70%; Non-toxic (N) ≥70%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-4. Exposure-response analysis for *Ulva*-treated (e.g., non-ammonia-related) porewater: A) Ampelisca.

			1		Int	erstitial Wa	ter Toxic	Units (100%	Porewate	r Conc./LC) ₅₀)	
		Tox	cicity)		Metals				Org	anics	
Station	Treatment	EC20%	Tox-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣΙWTU _{PW}	PCBs	PAHs	ΣIWTU _{PW}	NH₄-TOT
HB3A	Non-Ulva	77.3		0.71	0.08	30.6	2.65	34.1	0.00	0.00	0.00	0.53
SD01	Non-Ulva	40.0	1	0.07	0.09	1.37	0.23	1.76	0.16	0.00	0.16	1.14
A3SD10	Non-Ulva	77.3	L	0.66	0.14	2.00	0.23	3.03	0.00	0.00	0.00	0.65
SD28	Non-Ulva	100	N	0.41	0.07	2.59	0.29	3.36	0.00	0.00	0.00	0.77
	Effects Quotient	1		1.00	1.00	2.59	1.00	3.36	1.00	1.00	1.00	1.00
HB3A	Ulva	24.0	Н	0.56	0.06	18.1	1.55	20.3	0.00	0.00	0.00	0.05
SD01	Ulva	72.8	L	0.02	0.07	1.95	0.20	2.25	0.52	0.00	0.52	0.04
A3SD10	Ulva	10Ö	N	0.52	0.13	3.41	0.35	4.41	0.00	0.00	0.00	0.05
SD28	Ulva	100	N	0.22	0.08	3.12	0.15	3.57	0.00	0.00	0.00	0.03
Threshold E	Effects Quotient	1		1.00	1.00	3.41	1.00	4.41	1.00	1.00	1.00	1.00

High (H) <20 %, Intermediate (I) \geq 20 and <50%, Low (L) \geq 50 and <80%; Non-toxic (N) >80%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-4 (continued). Exposure-response analysis for *Ulva*-treated (e.g., non-ammonia-related) porewater: B) Mulinia.

					In	terstitial Wa	iter Toxic	Units (100%	Porewate	r Conc./LC) ₅₀)	
		To	kicity) 		Metals				Org	anics	
Station	Treatment	EC20%	Tox-GRP ²	Arsenic	Cadmium	Copper	Zinc	ΣIWTU _{PW}	PCBs	PAHs	ΣIWTU _{PW}	NH₄-TOT
A3SD10	Non-Ulva	0.41	Н	0.66	0.14	2.00	0.23	3.0	0.00	0.00	0.00	1.46
НВ3А	Non-Ulva	8.26	Н	0.71	0.08	30.6	2.65	34.07	0.00	0.00	0.00	1.19
SD01	Non- <i>Ulva</i>	9.21	Н	0.07	0.09	1.37	0.23	1.76	0.16	0.00	0.16	2.56
SD28	Non-Ulva	55.7	L	0.41	0.07	2.59	0.29	3.36	0.00	0.00	0.00	1.72
Threshold E	Effects Quotient			1.00	1.00	2.6	1.00	3.36	1.00	1.00	1.00	1.72
A3SD10	Ulva	1.25	Н	0.52	0.13	3.41	0.35	4.4	0.00	0.00	0.00	0.10
HB3A	Ulva	1.25	H	0.56	0.06	18.1	1.55	20.3	0.00	0.00	0.00	0.12
SD01	Ulva	2.14	Н	0.02	0.07	1.95	0.20	2.25	0.52	0.00	0.52	0.08
SD28	Ulva	13.8	i	0.22	0.08	3.12	0.15	3.57	0.00	0.00	0.00	0.06
Threshold E	Effects Quotient			1.00	1.00	3.1	1.00	3.6	1.00	1.00	1.00	1.00

High (H) <10 %; Intermediate (I) \geq 10 and <40%; Low (L) \geq 40 and <70%; Non-toxic (N) \geq 70%.

¹⁻ TEQ selected as the greater of 1.0 and the maximum value of least toxic sample group.

²⁻ Toxicity Group Classification:

Table 3.4-5. Summary of exposure-response analyses for porewater and Toxicity Identification Evaluation (TIE) testing for the Raymark study area.

		f		The	reshold Effects (Quotient (Interst	litial Water Toxic	c Units, Frequer	ncy of Exceeden	ce)	
					Metals				Orga	anics	
TRT	SPP	Statistic	Arsenic	Cadmium	Copper	Zinc	ΣIWTU _{PW}	PCBs	PAHs	ΣΙWTU _{PW}	NH₄-TOT
PW	AMP	TEQ	1.00	1.00	2.68	1.22	4.47	55.7	1.00	63.2	1.00
	MUL	TEQ	1.00	1.00	2.68	1.00	4.07	55.7	1.00	55.7	1.75
	AMP	%>TEQ	30.8%	0.00%	30.8%	7.7%	46.2%	0.00%	0.00%	0.00%	23 1"
	MUL	%>TEQ	28.6%	0.00%	28.6%	14.3%	57.1%	0.00%	0.00%	0.00%	57.4
	MEDIAN	TEQ	1.00	1.00	2.68	1.11	4.27	55.7	1.00	59.5	1.38
		%>TEQ	29.7%	0.00%	29.7%	11.0%	51.6%	0 0%	0.00%	0.00%	40 1%
EDTA	AMP	TEQ						1.00	1.00	1.00	0.00
Ì	MUL	TEQ						1.00	1.00	1.00	0.00
ŀ	AMP	%>TEQ						16.7%	0.00%	16.7%	0 ,t.
	MUL	%>TEQ						15.4%	0.00%	15.4%	0.00%
ł	MEDIAN	TEQ						1.00	1.00	1.00	0.00
		%>TEQ						16.0%	0.00%	16.0%	0.00%
C18	AMP	TEQ	1.77	1.00	1.46	7.00	8.40				0.00
	MUL	TEQ	1.47	1.00	1.37	1.00	3.20			tin ive Normal of Belgin	0.00
	AMP	%>TEQ	0.00%	0.00%	20.0%	0.00%	0.00%				0.00
	MUL	%>TEQ	16.7%	0.00%	25.0%	16.7%	25.0%				0.00
	MEDIAN	TEQ	1.62	1.00	1.41	4.00	5.80				0.00
		%>TEQ	8.33%	0.00%	22.5%	8.3%	12.5%				0.00%
	Overall	Mimimum	1.00	1.00	1.41	1.11	4.27	1.00	1.00	1.00	0.00
		Maximum	1.62	1.00	2.68	4.00	5.80	55.7	1.00	59.5	1.38
		%>TEQ	19.0%	0.00%	26.1%	9.66%	32.1%	8.01%	0.00%	8.01%	13.4%

PW = untreated porewater extracted from sediment, EDTA = treatment for metal chelation experiment, C18 = treatment for organics removal experiment

AMP = Ampelisca, MUL = Mulinia

TEQ = Threshold Effects Quotient = highest observed no effect ratio of porewater concentration to LC50 benchmark

%>TEQ = percentage of stations with IWTU values exceeding the TEQ.

IWTU = Interstitial water toxic units; see Section 4 text.

Appendix A-1-1. Results of chemical analyses of whole sediments collected in the Raymark study area.

	<u> </u>	I	â											-		-		
3	,	5	60	an.	-	<u> </u>	_		_	"			€	021(8)	m		D24 (B)	
	È	8		Š.	<u>Ş</u>	Ŝ	ĝ	ĝ	80 80 80	55 03	ģ	8	ã	203	5023	Š	5024 5028	23
Dioxins	≪	1000 00	660 00	660 00	660 00		89 00	100 00	660 00	1000 00	1700 00		620 00	610 00	990 00	660 00	1000	00 570 Ok
D.0	2,3,7,8-TCDD	4 58	2 56	0 99	6 91		2 67	1 75	1 59	2 61	3 64							57 1 54
	1 2.3.7.8 PeCDD	19 30	7 75	2 16	50 70		11 60	13 90	5 5 6	16 30								60 4 6H
	1.2.3.4.7 8-HxCDD	14 60	7 84	2 04	26 50		15 80	24 90	6 19	17 80								60 381
	1 2,3,6,7,6 HxCDD	86 40	27 00	4 70			52 70	70 50	20 50	70 30								40 821 50 778
	1.2.3.7.6.9 HxCDD	43 50	18 10	4 72			30 30 703 00	61 00 1550 00	15 60 472 00	41 80 1580 00								
	1.2.3.4.6,7.8 HpCDD	1520 00 15800 00	524 00 5360 00	72 30 1330 00			4780 00	9700 00	4300 00	14000 00								
	OCDD 2.3.7.6 TCDF	210 00	80 70	8 05			408 00	47 30	15 60	201 00								90 667
	2.3.7.8 1CDF Confirm	488 00	144 00	21 20			434 00	76 10	78 00	198 00						99 70	64	40 1150
	12.37.6-PeCDF	172 00	48 90	3 35			211 00	23 30	8 19	106 00	72 60	25 10	771	18 50	31 70	21 80	21	20 3 45
	2.3.4.7.8 PeCDF	464 00	109 00	5 56	4990 00		455 00	59 20	16 20	204 00								70 622
	1.2.3.4 7 8 HxCDF	1080 00	116 00	4 96	6750 00		410 00	69 50	20 70	203 00								30 5 19
	1 2,3,6,7 8 HxCDF	307 00	46 70	4 80			156 00	39 00	13 00	89 30								10 377
	2,3,4,6,7 8 HxCDF	PU5 00	101 00	7 53			311 00	73 00	20 90 2 79	159 00 8 07	146 00 8 56							20 9.47 143 2.42
	1.2.3.7.8 9 Hi-CDF	29 20 5540 00	6 54 639 00	1 76 49 90	65 90 16500 00		9 56 1240 DO	6 58 544 00	192 00	827 00		_						00 65 30
	1,2,3,4,6,7,8 HpCDF	76 80	14 80	2 96			26 50	29 90	11 70	27 20								60 565
	1,2,3,4,7,8,9-HpCDF OCDF	4180 00	2200 00	173 00			474 00	835 00	403 00	982 00								00 255 00
	Sum of Dioxers	31452	9990	2339			9386	13249	6186	19535		5706	5025	5 6076	14046	6369	10	186 4857
Dioxiri	Total TCDD	55 80	24 50	3 00			11 6Ó	22 70	9 9 1	21 90	25 40	1 27	5 36	3 40€	28 50	24 20	20	60 386
CDDs	Total PeCDD	59 00	36 10	8 19	63 30		18 30	46 90	11 50	72 70	70 90	9 32	21 60	27 30	63 00	22 10		30 8 94
-	Total HxCDD	510 00	244 00	59 70	988 00		289 00	453 00	179 00	429 00							265	
	Total HpCDD	2960 00	1330 00	220 00	3300 00		1320 00	2850 00	1200 00	3510 00							1690	
	Sum of CDDs	3584 80	1634 60	290 89			1638 PO	3372 60	1400 41	4033 60								
Dioxin	Total TCDF	1330 00	366 DO	42 10			1350 00	264 00	91 00	726 00								
CDFs	Total PeCDF	3450 00	634 00	36 30			2270 00	500 00	161 00	1190 00								00 53 80
	Total HxCDF	7180 00	759 00	53 60			2240 00	793 00	226 00	1350 00								
	Total HpCDF	7420 00	1170 00	87 40			1770 00 7630 00	1060 00 2517 00	366 00 844 00	1440 00 4706 00								
	Sum of CDFs	19380 00 627 65	2929 00 126 29	219 40 12 30			412 21	111 86	38 99	236 26	191 44				122 35			04 18 50
Metals	Toxicity Equivalency Factor Silver	2 00	3 00	300	2 40		1 40	1 50	1 40	1 40	0 88	0 44	0 42			0 62		60 0 60
MELAIS	Arsenic	23 90	11 20	17 90	8 50		7 00	10 60	6 50	9 00	9 20	3 70	3 80			8 20		10 4 50
	Barnim	2710 00	271 00	65 70	12200 00		1130 00	222 00	57 80	533 00	549 00	168 00	98 70	108 00	270 00	478 00	172	00 38 00
	Cadmum	8 30	1 20	1 50	1 00		5 50	4 40	1 40	7 60	7 60	0 80	3 20	3 20	6 30	2 60	4	20 051
	Chromum	463 00	402 00	231 00	290 00		89 70	99 90	84 40	91 50	116 00	31 80	35 60			97 40	107	
	Соррег	2550 00	1350 00	661 00	36400 00		1650 00	430 00	232 00	890 00	775 00	271 00	191 00			383 00	361	
	Mercury	0 43	0 77	1 20	0 47		0 22	0 32	0 37	0 28	0 49	0 16	0 14	0 17		0 28	0	
	Nickel	317 00	54 00	37 40 158 00	386 00 26500 00		80 70 1570 00	49 20 403 00	37 10 181 00	59 10 934 00	86 30 833 00	20 60 357 00	20 10 266 00			63 30 506 00	43 303	
	Lead Zinc	3290 00 1340 00	703 00 399 00	292 00	2320 00		750 00	508 00	290 00	671 00	676 00	181 00	270 00			363 00	439	
PAHS	2 Methylnáphthalené	1000 00	860 00	660 00	00 00		710 00	650 00	660 00	1000 00	1700 00	610 00	620 00			660 00	1000	
	Acenaphthene	1000 00	660 00	660 00	660 00		140 00	160 00	660 00	200 00	200 00	610 00	81 00	89 00	160 00	660 00	1000	00 570 00
	Acenaphthylene	190 00	200 00	660 00	660 00		350 00	330 00	130 00	410 00	440 00	140 00	160 00	170 00	340 00	110 00	200	00 84 00
	Anthracene	120 00	190 00	660 00	660 00		520 00	520 00	140 00	680 00	640 00	250 00	280 00	330 00		150 00	300	00 120 00
	Benzo(a)anihracene	1500 00	560 00	190 00	660 00		2500 00	2700 00	670 00	4000 00	3800 00	800 00	1400 00	1500 00		690 00	1700	
	Benzo(a)pyrene	1700 00	660 00	230 00	120 00		2400 00	2200 00	640 00	4000 00	3600 00	790 00	1300 00	1500 00		960 00	1900	
	Benzo(b)fluoranthene	2800 00	850 00	400 00	180 00		4000 00	4000 00	1000 00	10000 00	9200 00	1200 00	1800 00	2200 00		1600 00	3400	
	Benzo(g.h.i)perylene	260 00	190 00	74 00	660 00		460 00	530 00	190 00	1100 00	1000 00	320 00	360 00	330 00	940 00	310 00	600	
	Benzo(k)fluoranthene	950 00	470 00	390 00	660 00		1400 00	4200 00	380 00	9100 00	8400 00 4800 00	600 00 1100 00	790 00 1900 00	1000 00 2000 00		670 00 1200 00	1100 2300	
	Chrysene	1400 00	730 00	220 00	1100 00		3600 00	3900 00 520 00	990 00 120 00	5300 00 610 00	4800 00 550 00	1100 00	260 00	2000 00	4400 00 550 00	160 00	2300 310	
	Dibenz(a,h)anthracene	240 00	660 00 1200 00	660 DO 330 OO	660 00 260 00		430 00 5600 00	4500 00	120 00	11000 00	11000 00	1500 00	3000 00	3900 00	7900 00	2400 00	4900	
	Fluoranthene Fluorene	4500 00 1000 00	1200 00 660 00	560 00	280 00 660 00		190 00	260 00	660 00	220 00	360 00	75 00	140 00	140 00	220 00	83 00	130	
	Indeno(1.2.3 cd)nyrene	880 00	400 00	110 00	78 00		1500 00	1700 00	370 00	2200 00	2000 00	580 00	860 00	910 00	1800 00	620 00	1200	
	Naphibalene	1000 00	660 00	660 00	660 00		710.00	650 00	660 00	1000 00	1700 00	610 00	620 00	810 00	990 00	660 00	1000	
	Fliculativene	7110 00	390 00	120 00	150 00		2500 00	2200 00	610 00	2800 00	3800 00	840 00	1500 00	1700 00	2800 00	980 00	1500	
	Pyrene	3800 00	1300 00	410 00	930 00		5900 00	5700 00	1300 00	6900 00	5900 00	1900 00	2700 00	2900 00	6200 00	1400 00	3500 (
	Total PAHs	23130 00	10440 00	7094 00	9438 00	3	3110 00	34720 00	10660 00	60520 00	59090 00	12085 00	17771 00	20169 00	39960 00	13513 00	26040	00 8474 00

Units metals = µg/g dry weight, PAHs, PCBs, pesticides, dioxins = ng/g dry weight

Appendix A-1-1 (continued). Results of chemical analyses of sediments collected in the Raymark study area.

PCBs 3(4) 15(4) 15(4)	41"	010864	SD 10 (8)	=	•		õ							2	=			â		
8 (2 4 15 (4	41"		Š	=	60									-						
8 (2 4 15 (4	41"		9	9	8	၌	(83A/8)	ğ	ĝ.	9 0	5	ğ	ă	5021(A)	5021(8)	20 23	ğ	D24 (B)	920	633
15 (4		1 10	110	0 35	0.08	4 00	2 30	170	0 28	7034	70 49	051	*** o oo	0 21	" 0 14	0 32	0 15	0 20	0 25	20 003
	443			0 76					0 98	3 00	2 90					1 90			1 00	
		10 00	10 00	2 30 7 50	1 80	10 00	7 40	10 00	2 10 5 00	3 60 6 30	4 30 11 00	4 60	0 42	1 70	1 10	3 20 6 30	1 50	1 90	1 90	0 32
	2447	34 00	34 00	13 00	5 80	26 00	21 00	37 00	7 40	9 70	16 00	16 00	1 40	4 60	3 60	10 00	4 90	4 80	6 70 8 50	1 30
	2 2 3 5 1*	34 00	34.00	4 70	3 00	20 00	1,00	3. 00	2 00	1 40	3 40	10 00	. 40	400	3 00	2 30	4.00	4 00	3 10	1.54
	2 2 5 5 r			34 00					24 00	13 00	38 00					30 00			3 50	
	2 3'4 4')*			43 00					16 00	10 00	17 00					11 00			16 00	
	33(44)	5 00	5 00	3 30	1 70	3 40	3 50	3 10	1 30	1 70	2 20	1 40	0 30	0 40	0 46	1 30	0 98	1 20	1 20	0.30
	(2 2'4 5 5')*			16 00					22 00	13 00	37 00					26 00			23 00	
	(2 3 3 4 4 7 (2 3 4 4 5)	25 00 1 80	25 00 1 60	12 00 0 54	5 40 0 22	16 00 3 20	12 00 2 40	15 00 1 10	7 30 0 00	5 90 0 32	12 00 0 73	12 00 0 76	2 00 0 11	5 20 0 23	3 90 0 24	10 00 0 58	6 20 0 36	5 90 0 00	6 70 0 38	1 10
	(2 3 4 4 5)	65 00	65 00	24 00	11 00	52 00	42 00	37 00	20 00	15 00	28 00	30 00	5 20	14 00	10 00	27 00	15 00	14 00	18 00	0 06 2 80
	(2 3 4 45)	2 00	2 00	1 40	0 32	1 90	2 20	1 40	0 00	0.00	0 00	0 00	0 17	0 00	0.00	0 00	0.00	0 33	0 33	0.05
	(3.31.4.41.5)	3 80	3 80	1 20	0 09	46 00	20 00	2 20	0.00	0 59	3 00	1 70	0 24	0 00	0 00	0 00	0 00	0 95	0.96	0 08
1	(2 23 34 47)*																			
	(2 2 3 4 4 5)*			51 00					31 00	19 00	67 00					45 00			30 00	
	(2 2 4 4 5 5')* (157 (2 3 3 4 4 5/2 3 3' 4 4 5')	13 00	13 00	180 00 4 60	1 40	32 00	25 00	7 20	66 00 3 10	26 00 2 20	250 00 5 60	5 40	1 40	2.20	1 70	110 00	2.00	2.20	66 00	
	{2 3 4 4 5 5 1	13 00	13 00	400	0 48	88 00	72 00	11 00	1 60	1 20	5 30	3 70	100	2 30 1 10	0 94	4 60 2 60	2 90 2 60	3 20 2 20	2 20 1 50	0 42
	(3 34 45 5)	20 00	20 00	4 60	0 00	190 00	160 00	110 00	12 00	4 30	50 00	25 00	1 10	5 60	7 60	20 00	32 00	29 00	1 50	0 03
170 (7	(2 2 3 3 4 4 5)*	130 00	130 00	44 00	1 80	4200 00	3000 00	170 00	16 00	7 20	67 00	37 00	14 00	8 80	8 50	31 00	26 00	27 00	17 00	1 50
	(2 2 3 4 4 5 5')*	2800 00	3200 00	760 00	6 20	52000 00	42000 00	2600 00	270 00	89 00	1100 00	540 00	260 00	140 00	160 00	490 00	580 00	590 00	250 00	7 60
	(2 2'3 4'5 5'6)*	44.00		930 00					340 00	110 00	1400 00					590 DO			360 00	
	(2 3 3 4 4 5 5') (2 2 3 3 4 4 5 6)'	15 00	15 00	4 40 78 00	0 00	120 00	92 00	11 00	0 00	0 00	4 90	2 50	1 10	0.00	0 00	1 90	0.00	2 60	0 00	0.00
	(2 2 3 3 4 4 5 5 8)*			680 00					26 00 300 00	9 30 150 00	110 00 1100 00					55 00 600 00		•	21 00 280 00	
	(2 2 3 3 4 4 5 5 8 6 P	500 00	500 00	63 00	1 30	2100 00	1900 00	210 00	32 00	16 00	100 00	63 00	34 00	17 00	18 00	60 00	110 00	110 00	33 00	0.86
	of PCB Congeners	• • • • • • • • • • • • • • • • • • • •	****	2941				•	1190	508	4359	03.00	0400		,,,,,,	2108	*10 00	*10 00	1142	0.00
	PCBs (Sum of Congeners X 2)	27081	27081	6006	247	353763	280604	20718	2355	967	8661	4642	2428	1217	1319	4119	4886	4845	2303	105
	MonoCBs	2 00	2 00	0 35	0 12	150	8 50	5 10	061	0 34	1 20	1 30	0 24	0.44	0 17	1 00	0.78	0 64	0 47	0 09
	I DiCBs	24 0	24 0	6 20	2 60	40 0	26 0	35 0	6 20	110	130	16 0	1 40	8 30	3 40	8 50	12 0	3 70	9 10	0 92
	TetraCBs	180 600	180 600	53 0 300	20 0 110	140 440	120 460	200 250	53 O 100	50 0 73 0	100 180	99 D	8 20	3/0	27 0	66 0	33 0	320	510	6 00
	PenlaCBs	740	740	180	66 0	1900	1400	340	150	970	240	150 140	28 0 52 0	61 0 96 0	48 0 65 0	130 200	75 0 130	70 0 12 0	160 150	22 U
	HexaCBs	1900	1900	600	42 0	38000	27000	1900	230	100	790	460	200	130	120	390	370	350	230	25 0
	HeptaCBs	13000	13000	3000	20 0	230000	180000	11000	1100	330	4400	2200	1300	490	580	1900	2100	2100	1100	34 0
	OctaCBs	6300	6300	1300	5 40	71000	58000	4800	460	180	1900	1000	580	250	300	870	1200	1200	480	9 40
	NonaCBs	6700	6700	1100	4 60	43000	38000	4000	470	220	1800	990	480	260	300	920	1400	1400	420	7 60
	of PCB Homologs PCBs	29446 30000	29448 30000	6539 6600	279 280	384535 390000	305015 310000	22530 23000	2570	1061	9424	5058	2650	1333	1444	4488	5321	5276	2601	124
	or 1016	30000	30000	0000	200	66 00	310000	23000	2600 65 00	1100	9500	5100	2700	1300 54 00	1500	4500	5400	5400	2600	120
	or 1221					130 00			130 00					110 00						- 1
Aroclo	or 1232					66 00			65 00					54 00						í
	or 1242					66 00			65 00					54 00						- 1
	or 1248					66 00			65 00					54 00						1
	or 1254 or 1260					66 00			65 00					54 00						
	or 1262					66 00 24000 00			65 00					54 00						
	or 1268					15000 00			680 DO 560 OO					320 00 200 00						l
	of Aractors					9526 00			1760 00					954 00						
Pesticides 4.4°DE						11 00			9 50					5 40						- 1
4 4' DD						6 60			6 50					5 40						I
Aldun						3 40			3 40					0 97						ľ
Alpha d	chlordane					3 40			16 00					5 70						- 1
Beta B						3 40 3 40			3 40 3 40					2 80						
Della B						3 40			3 40 1 20					2 80 0 61						- 1
Dieldrin	rin I					0 91			6 50					5 40						1

Units metals = µg/g dry weight, PAHs, PCBs, pesticides, dioxins = ng/g dry weight

^{*} indicates congeners included in Sum of PCB Congeners and Total PCBs (Sum of Congeners X 2) calculation

Additional Total PCBs (Sum of Congeners X.2) values calculated from regression analysis as 0.920 (Sum of PCB Homologs) - 9.548

Appendix A-1-1 (continued). Results of chemical analyses of sediments collected in the Raymark study area.

<u> </u>		l _	<u>@</u>			_						_	_			æ	
Sala.	\$ <u>}</u>	35010	135010 (9044	2	183A(8)	8	Š	5	\$01 4	80	,D21(A)	.021(B)	20 23	2	SD24 (8)	\$637
Pesticides I	Endosulian I		_ <u> </u>		— ≛ 340—	<u> </u>	— NO 68				- 9	- 10 45	9			<u> </u>	<u>v2</u>
	Endosullan N	ı			6 60		1 60					0 92					
	Endusulfan sulfate				120 00		6 50					5 40					
	Endrin	i			6 60		6 50					5 40					
- 1	Endrin aldehyde				2300 00		20 00					20 00					
	Endrin kelone				6 60		6 50					5 40					
	Gamma chlordane				5 30		8 10					4 90					
	Gamma BHC (Lindane)				3 40		3 40					2 80					
	Heptachlor				3 40		3 40					2 80					
	Heptachlor epoxide	1			3 40		3 40					2 80					
	Hexachlorobenzene	1000 00	660 00	680 00	660 00	710			1000 00	1700 00	610.00	520 00	610 00	990 00	660 00	1000 0	0 570 (
	Toxaphene	1 1000 00	000 00	000 00	340 00	, 10	340 00		1000 00	1700 00	01000	280 00	01000	940 00	000 00	1000 (, 370 C
	p.p. DDE				3 60		7 20					5 40					
	p.p. Methoxychlor	İ			34 00		34 00					28 00					
	1 2 4- Inchlorobenzene	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	810 00	990 00	660 00	1000 0	0 570 (
1	1.2 Dichlorobenzene	1000 00	660 00		660 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	1.3 Dichlorobenzene	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610.00	620 00	610 00	990 00	660 00	1000 0	
	1 4 Dichlorobenzene	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2,2'-Oxybis(1-chloropropane)	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 (
	2,4.5 Trichlorophenol	2500 00	1700 00	1700 00	1700 00	1800			2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 (
	2 4,6 Trichlorophenol	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	610 00	290 00	660 00	1000 0	
	2.4 Dichlorophenol	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2.4 Dimethylphenol	1000 00	660 00	660 00	230 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2.4 Dinitrophenot	2500 00	1700 00	1700 00	1700 00	1800			2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	2.4 Dinitrololuene	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2.6 Dinitrololuene	1000 00	660 00	660 00	660 00	710		860 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	. 1000 0	
	2 Chloronaphthalene	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2 Chlorophenal	1000 00	660 00	660 00	660 00	7 10	00 650 00		1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2 Methylphenol	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	2 Nitroaniline	2500 00	1700 00	1700 00	1700 00	1800			2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	2 Nitrophenal	1000 00	660 00	660 00	660 00	710			1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	3 3' Dichlorobenzidine	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	3 Nitroaniline	2500 00	1700 00	1700 00	1700 00	1800		1700 00	2600 00	4400 DO	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	4 6-Dinitro-2-methylphenal	2500 00	1700 00	1700 00	1700 00	1800		1700 00	2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	4 Bromophenyl phenyl ether	1000 00	660 00	660 00	660 00	7101		660 00	1000 00	1700 00	610 00	620 00	610 00	290000	660 00	1000 0	
	4 Chloro-3 methylphenol	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	4 Chloroaniline	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00		
	4 Chlorophenyl phenyl ether	1000 00	660 00	660 00	660 00	710		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0 1000 0	
	4 Methylphenol	1000 00	660 00	660 00	660 00	1300		860 00	1000 00	1700 00	9900 00	430 00	470.00	990 00	660 00	1000 0	
	4 Nitroaniline	2500 00	1700 00	1700 00	1700 00	1800 (1700 00	2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	4 Nitrophenol	2500 00	1700 00	1700 00	1700 00	1800 (1700 00	2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 0	
	Bulyl benzyl phthalate	1000 00	660 00	660 00	660 00	540 (660 00	810 00	470 00	250 00	110 00	9100	670 00	210 00	280 0	
	Carbazole	110 00	660 00	660 00	660 00	410 (83 00	430 00	550 00	140 00	230 00	230 00	410 00	130 00	220 0	
	Di-n-butyl phthalate	1000 00	660 00	660 00	660 00	84 0		660 00	170 00	1700 00	610 00	95 00	110 00	990 00	660 00	1000 0	
	Di-n-octyl phthalate	1000 00	660 00	660 00	660 00	2200 0		87 00	3300 00	3300 00	120 00	660 00	1000 00	2400 00	180 00	740 0	
	Dibenzoluran	1000 00	660 00	660 00	660 00	89 0		860 00	1000 00	1700 00	610 00	620 00	610 00	2400 00	660 00	1000 0	
	Diethyl phthalale	1000 00	. 660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	Dimethyl phthalate	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	220 00	610 00	620 00	810 00	990 00	660 00	1000 0	
	lexactiorobuladiene	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	820 00	610 00	990 00	660 00	1000 0	
	lexachlorocyclopentaclene	1000 00	560 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	lexachloroethane	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 0	
	sophorone	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 00	
	N Nitroso-di-n-propylamine	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 00	
	1 Nitrosodiphenylamine(1)	1000 00	110 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 00	
	Vitrobenzene	1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00	660 00	1000 00	
	Pentachlorophenol	2500 00	1700 00	1700 00	1700 00	1800 0		1700 00	2600 00	4400 00	1500 00	1600 00	1500 00	2500 00	1700 00	2500 00	
I .	rentachorophenoi Phenoi	1000 00	660 00	660 00	120 00	240 0		660 00	180 00	240 00	1000 00	620 00	610 00	170 00	660 00		
		1000 00	660 00	660 00	660 00	7100		660 00	1000 00	1700 00	810 00	620 00	810 00			1000 00	
	ors(2-Chloroethoxy)methane ors(2-Chloroethyl)ether	1000 00	660 00	660 00	660 00	710 0 710 0		660 00	1000 00	1700 00	610 00	620 00	610 00	990 00 990 00	660 00 660 00	1000 00 1000 00	

Units metals = µg/g dry weight, PAHs, PCBs, pesticides, dloxine = ng/g dry weight

Appendix A-1-2.1. Results of chemical analyses of sediment porewaters collected from the Raymark study area.

SS SS SS SS SS SS SS SS SS SS SS SS SS	Analyte	A3SO 10	980	GMOB	2	8	2003	9008	\$013	7108	80.08	SD21(A)	SD21(B)	SO23	\$05 205	\$05#	\$633
Melais	Aluminum	250 00	0 00	1670 00	1380 00	250 00	0.00	210 00	- 000	0.00	0 00	0 00	330 00	0 00	290	230 00 0 00	0 00
	Silver	000	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00 17 50	0 00 7 80	0 00 15 70	0 00 8 20	34 60	11 60	19 10	18 00
	Arsenic	19 90	58 70	20 10	33 50 0 00	0 00 0 00	95 20 0 00	80 80 0 00	73 60 0 00	0 00	000	000	0 00	0 00	0 00	0 00	0 00
	Barrum	0 00	0 00 3 68	0 00 0 17	3 17	283	3 86	160	2 78	3 27	0 65	3 45	3 36	3 33	2 80	3 71	2 95
	Cadmium	5 60 1 47	2 64	169	0 84	3 24	1 05	000	2 81	3 14	1 88	1 33	0 00	3 24	2 36	0 00	0 00
	Chromium	65 00	71 00	55 00	599 00	112 00	54 00	32 00	46 00	48 00	0 00	52 00	49 00	35 00	41 00	55 00	54 00
	Copper Iron	170 00	520 00	470 00	340 00	610 00	170 00	310 00	220 00	250 00	12540 00	280 00	310 00	120 00	3700 00	120 00	200 00
	Nickel	243 80	14 20	32 00	111 80	27 30	15 30	41 00	4 00	31 00	12 70	16 40	13 60	9 50	14 90	7 40	0 00
	tead	1 40	1 44	1 56	13 24	2 80	0 75	1 72	0 75	3 56	1 00	1 96	2 56	3 92	4 40	2 76	8 96
	Zinc	1540 00	260 00	420 00	170 00	170 00	150 00	200 00	140 00	270 00	40 00	130 00	100 00	60 00	50 00	260 00	50 00
PAHs	1-Methylnaphthalene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	1 Melhylphenanthrene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	2.3.5-Trimethylnaphthalene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00 0 00	0 00
	2,5-Dimethylnaphthalene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	- 000	0 00	000	0 00	0 00	0 00	0 00
	2 Methylnaphthalene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0.00	000	0 00	0.00	0 00
	Acenaphihène	0 00	0 00	0 00 0 00	0.00	000	0 00	0.00	0.00	000	0.00	0.00	0 00	0 00	0 00	0 00	0 00
	Acenaphthylene	0 00	0.00	0 00	0.00	0.00	0.00	0.00	0 00	0 00	0.00	0 00	0.00	0 00	0.00	0 00	0 00
	Anthracene	000	0.00	000	0.00	0.00	000	0 00	2 10	000	0.00	0 00	0.00	0 00	0 00	0.00	0 00
	Benzo(a)anthracene	000	0 00	0 00	0.00	0 00	0 00	0.00	0 00	0.00	0.00	0 00	0.00	0 00	0 00	0 00	0 00
	Benzo(a)pyrene Benzo(b)fluoranthene	000	0 00	0 00	0.00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0.00
	Benzo(e)pyrene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	Benzo(g.h.i)perylene	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0.00	0 00	0 00,	0 00	0 00
	Benzo(k)fluoranthene	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	. 0.00
	Biphenyl	0.00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	Chrysene	8 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00
	Dibenz(a,h)anthracene	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	Fluoranthene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	fluorene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	Indeno(1.2.3-cd)pyrene	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00
	Naphthalene	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00 0 00	0 00	000	0 00	0 00	000	0 00
	Perylene	0 00	0 00	0 00	0 00	0 00	0.00	0.00	0 00	0.00	0 00	0.00	000	000	0.00	0.00	0 00
	Phenanthrene	0 00	0 00	0 00	000	000	000	0 00	0.00	000	0.00	0 00	0 00	0 00	0 00	0 00	0 00
	Pyrene	000	0 00	0.00	0.00	000	0.00	0.00	2 10	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00
PCBs	Sum of PAHs	. 000	0.00	0.00	0 00	000	8 77 10	748 80	212 70	0.00	0 00	0.00	0.00	471 90	0.00	607 30	0 00
PCBS	18 (2 2'5)*	0 00	0.00	0 00	0 00	0 00	85 10	189 00	0 00	0 00	0 00	0 00	0 00	64 40	0 00	163 40	0 00
	20 (2 4 4')*	0 00	29 60	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	55 80	0 00
	44 (2 2 3 5)*	0 00	195 60	0 00	0 00	0 00	24 00	17 40	0 00	0 00	0 00	0 00	0 00	0 00	0 00	125 70	0 00
	52 (2 2'5 5)*	0 00	321 30	0 00	0 00	0 00	55 80	44 90	11 70	0 00	0 00	0 00	0 00	35 90	0 00	145 40	0 00
	66 (2 3'4 4')*	0 00	0 00	0 00	0 00	0 00	0 00	0 00	23 30	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	77(3 3' 4 4')	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00
	99	000	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	8 40	0 00
	101 (2 2'4 5 5')*	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	8 50	0 00
	105 (2 3 3 4 4)*	000	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00 0 00	0 00
	118 (2 3'4 4'5)*	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0.00	0 00	0 00
	126 (3 3' 4 4' 5)	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0.00	0.00	0 00	0.00	0 00	0 00	0 00
	128 (2 2'3 3'4 4')"	0 00	0 00	0 00	0 00 0 00	0 00	000	0 00	0 00	0.00	000	0 00	0 00	0 00	0 00	0.00	0 00
	138 (2 2'3 4 4'5)*	0 00	0.00	0 00		0.00	000	000	0 00	0 00	0 00	0 00	0 00	000	0 00	0 00	0 00
	153 (2 2'4 4'5 5')*	0 00	0 00	0 00	0 00	0 00	000	000	0 00	000	0 00	0 00	000	000	0 00	0 00	0 00
	170 (2 2'3 3'4 4'5)*	0 00	0 00	0 00	0 00	0 00	000	000	4 10	0 00	000	0 00	0 00	0 00	0 00	0 00	0 00
	180 (2 2'3 4 4'5 5')"	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	000	0 00	0 00	0.00	0 00
	187 (2 2'3 4'5 5'6)*	0 00	0 00	0 00	0 00	0 00	0 00	000	000	000	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	195 (2 2'3 3'4 4'5 6)*	0 00	0.00	0 00	0 00	0 00	0 00	0.00	000	000	000	0 00	0 00	0 00	0 00	0 00	0.00
	206 (2 2'3 3'4 4'5 5'6)*	000	0 00	000	000	0 00	0 00	0 00	0 00	000	0.00	0 00	0 00	0 00	0 00	0 00	0 00
	209 (2 2'3 3'4 4'5 5'6 6')*		0.00	0.00	0.00	· · · ·	~ ~~							1144 40	0 00	2212 20	0 00

Units µg/L. *indicates congeners included in Total PCBs calculation.

Appendix A-1-2.2. Results of chemical analyses of EDTA-treated sediment porewaters collected from the Raymark study area.

Chemical Class Scalo	Analyte	CSD1	SD07	SDO8	SD13	SD23	SD28
I robs	8 (2 4)* 18 (2 2'5)*	0.00	0.00	0.00	143.19	126.15	0.00
Ī	28 (2 4 4')*	0.00	0.00	0 00	0.00	0.00	0.00
ł	44 (2 2'3 5')*	0.00	0 00	8 30	0 00	0 00	0.00
i	52 (2 2'5 5)*	0.00	0 00	4 62	0.00	0 00	0 00
	1	0.00	0.00	0 00	0.00	0 00	0.00
Í	66 (2 3'4 4')*	0.00	0 00	0 00	0 00	0.00	0.00
!	77(3 3' 4 4')	0.00	0.00	0 00	0 00	0.00	0.00
ł	99	0.00	0.00	0 00	. 0 00	0.00	0 00
	101 (2 2'4 5 5')*	0.00	0.00	0 00	0 00	0 00	0.00
ļ	105 (2 3 3'4 4')*	0.00	0 00	0 00	0.00	0.00	0.00
	118 (2 3'4 4'5)*	0.00	0.00	0 00	0.00	0.00	0.00
	126 (3 3' 4 4' 5)	0.00	0.00	0 00	0.00	0 00	0.00
	128 (2 2'3 3'4 4')*	0.00	0.00	0.00	0.00	0.00	0.00
	138 (2 2'3 4 4'5)*	0.00	0.00	0.00	0.00	0 00	0.00
1	153 (2 2'4 4'5 5')*	0.00	0.00	0 00	0.00	0 00	0 00
	170 (2 2'3 3'4 4'5)*	0.00	0.00	0 00	0.00	0.00	0.00
ĺ	180 (2 2'3 4 4'5 5')*	0.00	0 00	0.00	0 00	0 00	0.00
	187 (2 2'3 4'5 5'6)*	0.00	0.00	0 00	0 00	0 00	0 00
	195 (2 2'3 3'4 4'5 6)*	0 00	0 00	0 00	0.00	0.00	0 00
	206 (2 2'3 3'4 4'5 5'6)*	0.00	0 00	0 00	6.50	0.00	
	209 (2 2'3 3'4 4'5 5'6 6')*	0 00	0.00	0 00	0.00	0.00	0.00
	Total PCBs (Sum of Congeners X 2)	0.00	0.00	25 84	299 38	252 30	0.00 0.00

Units: µg/L. * indicates congeners included in Total PCBs calculation

Appendix A-1-2.3. Results of chemical analyses of C18-treated sediment porewaters collected from the Raymark study area.

Chemical	Analyte	A3SD10	CSD1	GMOB	нвза	2003	SD07	800s	SD13	\$10S	% G 2 24	SD21(A)	SD21(B)	E 0 0 10 12	80.00 80.00	82 CO 52.86	25 5 54
Metals	Arsenic	0.84	40 95	2 00	1 24	0.00	63.54	57.98	5.28	0 00	1 01	3 13	5 66	4 85	3 74	9 42	5 78
	Cadmium	9 32	8 48	6 62	5 16	3 39	5 48	5 76	3 75	4 52					0 36	0 00	0 21
1	1	0 00	0 38	0 00	0 00	1 44	0 00	0 00	0 00	1 03	0 51	0 00	0 00	0 94			
	Chromium	1		28 00	84 00	15 00	30 00	19 00	21 00	18 00	0 00	13 00	9 00	28 00	18 00	26 00	31 0 0
1	Copper	23 00	19 00	_			0 00	0 00	0 00	0.00	0 00	0 00	0.00	0 00	0 00	0 00	0.00
1	Nickel	6 58	0 00	0 00	0 00	12 66			0 00	4 38	0 00	0 00	4 96	4 18	0 00	0 00	0 00
i	Lead	0 00	0 00	0 00	3 30	0 00	0 00	0 00					70 00	40 00	50 00	70 00	60 00
1	Zinc	2400 00	100 00	510 00	230 00	170 00	70 00	90 00	120 00	140 00	70 00	80 00	70 00	40.00	30 00	,,,,,,,	

Units µg/L.

Appendix A-1-2.4. Results of chemical analyses of *Ulva* and non-*Ulva* sediment porewaters collected from the Raymark study area.

			Ulva)		Non-Ulva					
Chemical Class	Analyte	A3SD10	нвза	SD01	SD28	A3SD10	нвзь	SD01	SD28		
Melals	Arsenic	18.56	20.15	0.89	8.05	23.69	25.47	2.64	14.86		
	Cadmium	4.58	2.12	2.48	2.86	5.01	2.87	3.14	2 57		
	Chromium	na	na	na	na	na	na	na	na		
	Copper	70.00	371.00	40.00	64 00	41.00	628.00	28 00	53.00		
	Nickel	na	na	na	na	na	na	na	na		
	Lead	na	na	na	na	na	na	na	na		
	Zinc	120.00	530 .00	70 00	50 00	80.00	910.00	80.00	100.00		
PCBs	8 (2 4)*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	18 (2 2'5)*	0.00	0.00	0.00	0 00	0.00	0 00	0.00	0 00		
	28 (2 4 4')"	0.00	0.00	10.49	0 00	0.00	0.00	0.00	0.00		
	44 (2 2'3 5')*	0.00	0.00	0.00	0 00	0.00	0.00	3.21	0.00		
	52 (2 2'5 5)°	0 00	0.00	0.00	0.00	0.00	0 00	0.00	0.00		
	66 (2 3'4 4')*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	77(3 3' 4 4')	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00		
	99	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00		
	101 (2 2'4 5 5')*	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00		
	105 (2 3 3'4 4')*	0.00	0.00	0.00	0 00	0.00	0 00	0 00	0.00		
	118 (2 3'4 4'5)*	0.00	0.00	0 00	0 00	0.00	0.00	0.00	0.00		
	126 (3 3' 4 4' 5)	0.00	0.00	0.00	0 00	0 00	0 00	0 00	0.00		
	128 (2 2'3 3'4 4')*	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0.00		
	138 (2 2'3 4 4'5)*	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00		
	153 (2 2'4 4'5 5')*	0.00	0.00	0.00	0 00	0.00	0 00	0.00	0.00		
	170 (2 2'3 3'4 4'5)*	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00		
	180 (2 2'3 4 4'5 5')*	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00		
	187 (2 2'3 4'5 5'6)*	0.00	0.00	0.00	0 00	0.00	0.00	0 00	0.00		
	195 (2 2'3 3'4 4'5 6)*	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00		
	206 (2 2'3 3'4 4'5 5'6)*	0.00	0.00	0.00	0 00	0.00	0 00	0.00	0.00		
	209 (2 2'3 3'4 4'5 5'6 6')*	0 00	0.00	0.00	0.00	0 00	0 00	0.00	0.00		
	Total PCBs (Sum of Congeners X 2)	0 00	0.00	20.98	0.00	0.00	0.00	6.43	0.00		

Units: µg/L. na=not applicable. * indicates congeners included in Total PCBs calculation.

Appendix A. 3. Results o. Emical analyses of assues collect. from fish in the Raymark stuc, area.

Chemical Class	Analyte	A3SD10	GM08	MF03	SD26
Dioxins	2.3,7.8-TCDD	0.20	0.33	0.27	0.22
	1,2,3,7,8-PeCDD	0.33	0.82	0.49	0.32
	1,2,3,4,7,8-HxCDD	0.09	0.16	0.12	0.12
	1,2,3,6,7,8-HxCDD	0.25	0.41	0.31	0.33
	1,2,3,7,8,9-HxCDD	0.11	0.14	0.13	0.18
	1,2,3,4,6,7,8-HpCDD	2.27	1.39	2.48	7.14
	OCDD	11.80	10.90	17.40	42.00
İ	2,3,7,8-TCDF	1.38	3.19	1.22	1.69
ľ	2,3,7,8-TCDF Confirm.	2.02	4.18	1.56	2.30
	1,2,3,7,8-PeCDF	0.43	0.35	0.15	0.15
	2,3,4,7,8-PeCDF	1.24	1.09	0.50	0.69
	1,2,3,4,7,8-HxCDF	0.51	0.16	0.16	0.30
	1,2,3,6,7,8-HxCDF	0.35	0.14	0.09	0.12
	1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	0.70	0.42	0.35	0.47
1	1,2,3,4,6,7,8-HpCDF	0.09	0.11	0.06	0.12
	1.2,3.4,0.7,8-HpCDF	2.07	1.63	3.24	2.36
	OCDF	0.15	0.30	0.21	0.27
	Sum of Dioxins	8.61	7.77	17.80	10.30
Dioxin	Total TCDD	36.57	29.30	44.98	66.77
CDDs	Total PeCDD	0.20 0.33	0.33	0.45	0.28
0003	:Total HxCDD	0.62	0.01 0.26	0.49	0.32
1	Total HpCDD	3.55	2.69	0.88	1.41
1	Sum of CDDs	4.69	3.29	4.31 6.13	15.50
Dioxin	Total TCDF	3.40	3.25	1.53	17.51
CDFs	Total PeCDF	4.44	2.71	0.95	3.36 1.71
	Total HxCDF	3.57	1.30	1.83	0.99
l	Total HpCDF	3.83	6.67	13.90	8.12
	Sum of CDFs	15.24	13.95	18.21	14.18
	Toxicity Equivalency Factor	1.42	1.82	1.11	1.21
PCBs	3 (4)	0.00	0.00	0.00	0.00
	15 (4 4')	0.00	0.00	0.00	0.00
	28 (2 4 4')	2.50	13.00	3.30	3.40
	77 (3 3' 4 4')	0.00	1.30	0.00	0.00
	105 (2 3 3'4 4')	3.20	14.00	3.70	4.30
	114 (2 3 4 4'5)	0.18	0.62	0.30	0.31
	118 (2 3' 4 4'5)	11.00	36.00	12.00	14.00
]	123 (2' 3 4 4'5)	0.00	0.38	0.00	0.00
}	126 (3 3' 4 4' 5)	0.00	0.00	0.00	0.00
	156/157 (2 3 3'4 4'5/2 3 3' 4 4'5')	0.85	2.70	1.30	1.10
	167 (2 3'4 4' 5 5')	0.80	1.80	0.69	0.77
	169 (3 3'4 4'5 5')	0.37	0.00	0.22	0.00
1	170 (2 2'3 3'4 4'5)	3.30	2.90	2.40	3.70
1	180 (2 2'3 4 4'5 5')	58.00	11.00	39.00	40.00
1	189 (2 3 3'4 4'5 5') 209 (2 2'3 3'4 4'5 5'6 6')	0.00	0.00	0.00	0.00
	Sum of PCB Congeners	2.20	0.37	1.80	1.50
1	Sum of PCB Congeners X 2	82.40	84.07	64.71	69.08
PCB	Total MonoCBs	164.80 0.13	168.14	129.42	138.16
Homologs	Total DiCBs	0.13	0.00 0.42	0.00	0.00
	Total TriCBs	18.00	31.00	1.60 47.00	0.00 14.00
]	Total TetraCBs	68.00	180.00	120.00	94.00
1	Total PentaCBs	77.00	170.00	88.00	89.00
	Total HexaCBs	77.00	120.00	64 .00	85.00
l	Total HeptaCBs	200.00	43.00	130.00	130.00
	Total OctaCBs	62.00	5.00	74.00	64.00
		J	2.00	, 4.00	J-7.00
	Total NonaCBs	40.00	0.00	25.00	24 00
		40.00 542.75	0.00 549 .42	25.00 549.60	24.00 500.00
	Total NonaCBs Sum of PCB Homologs Total PCBs	40.00 542.75 540.00	0.00 549.42 550.00	25.00 549.60 550.00	24.00 500.00 500.00

Units: PCBs, dioxins = ng/g dry weight.

Appendix A-1-4.1. Grain size analysis for sediments collected from the Raymark study area.

Sample				%5	Silt
ID	% Sand	% Silt	% Clay	63-15.6u	<15.6⊔
A3SD10	35.6	64.4	0.00	24.3	40.1
CSD1	84.9	15.1	0.00	3.50	11.6
GM03	78.3	21.7	0.00	8.18	13.5
HB3A	20.5	78.1	1.38	29.1	50.4
SD01	33 .0	65.6	1.39	20.1	46.9
SD07	73.3	25.9	0.75	9.51	17.2
SD08	66.6	33.4	0.00	17.2	16.2
SD13	54.7	44.0	1.30	11.3	34.0
SD13-RP1	54.7	45.3	0.00	15.6	29.8
SD14	57.0	42.0	0.96	14.3	28.7
SD14-RP1	57.0	42.2	0.76	16.5	26.4
SD18	16.7	83.3	0.00	27.6	55.7
SD21(A)	22.3	75.5	2.14	31.0	46.7
SD21(B) ²	20.7	75.2	4.10	30 .1	49.2
SD23	52.0	46.9	1.07	18.2	29.8
SD24	57.1	36 .5	6.42	20.8	22.1
SD28	78.5	15.7	5.90	6.49	15.1
SD37	28.4	71.6	0.00	22.5	49.1

^{1 -} Lab duplicate.

^{2 -} Field duplicate.

Appendix A-1-4.2. Analysis for Organic Carbon in sediments and sediment porewaters collected from the Raymark study area.

	Sediment	Porewater
	Total Organic	Dissolved Organic
Sample ID	Carbon (%)	Carbon (mg/L)
A3SD10	8.76	10.3
A3SD10-DUP1		9.90
CSD1	12.1	21.3
GM03	5.86	14.3
НВЗА	14.9	30.4
SD01	7.07	69.0
SD07	7.77	24.1
SD08	10.0	24.6
SD13	10.7	33 .6
SD14	7.86	51.1
SD18	6.36	459
SD21(A)	4.56	81.9
SD21(B) ²	3.25	88.7
SD21-AVG	3.91	85 .3
SD23	8.78	30.7
SD24	9.91	25.0
SD28	6.26	19.7
SD37	2.03	34.2
Median	7.77	30.6

^{1 -} Lab duplicate.

Note: mg/g dry weight = % X 10

^{2 -} Field duplicate.

Appendix A-1-5. Summary of SEM and AVS concentrations in sediments collected from the Raymark study area.

Sample	AVS		SEM Cor	ncentration (µ	mol/g dry)		Sum of	SEM-AVS
Name	(µmol/g dry)	Cd	Cu	Ni	Pb	Zn	SEM Conc	(µmol/g dry)
A3SD10	2.07	0.02	0.04	0.58	5.18	6.74	12.6	10.5
CSD1	31.6	7.3E-3	0.28	0.37	2.48	2.89	6.03	-25.5
GM08	9.40	1.1E-2	0.32	0.15	0.41	3.64	4.53	-4.9
НВЗА	54.7	3.9E-3	0.03	0.78	46.1	15.3	62.2	7.5
SD01	77.7	0.03	1.2E-2	0.46	6.51	7.93	14.9	-62.7
SD07	117	0.02	0.08	0.37	1.49	5.49	7.44	-109.2
SD07-RP1	128	0.02	0.05	0.36	1.38	5.23	7.04	-121.3
SD08	85.2	1.4E-2	0.21	0.46	0.71	3.82	5.23	-79.9
SD13	90.5	0.04	0.03	0.32	3.62	7.65	11.7	-78.9
SD14	63.5	0.05	2.4E-3	0.43	1.63	5.56	7.67	-55.8
SD18	0.68	6.7E-3	2.66	0.20	1.60	2.46	6.94	6.3
SD18-RP ¹	0.76	7.1E-3	2.63	0.20	1.70	2.58	7.11	6.3
SD21A	90.8	0.02	0.06	0.28	1.19	3.75	5.29	-85.5
SD21B	99.3	0.02	0.02	0.24	1.20	3.89	5.36	-94.0
SD23	164	0.03	0.20	0.66	2.27	6.08	9.24	-154.7
SD24	109	0.02	0.47	0.72	2.13	5.40	8.74	-100.3
SD28	105	0.02	0.21	0.29	1.23	7.43	9.1 9	-95.3
SD37	10.1	3.1E-3	0.48	0.12	0.14	1.65	2.39	-7.7

^{1 -} RP designates replicate analysis.

SEM = Simultaneously Extractable Metals; AVS = Acid Volatile Sulfides.

Appendix A-2-1.1. Hazard Quotients (HQs) and Hazard Indices (HIs) for contaminants in sediments for the Raymark study area. Benchmark = ER-L reference data.

Chemical Class	Analyte	ER-L'	A3SD10	CSD1	GM08	НВЗА	SD01	SD07	SD08	SD13	SD14	SD18	SD21	SD23	SD24	SD28	SD37
Metals	Silver	1.00	2.00	3.00	3.00	2.40	1.40	1.50	1.40	1.40	0.88	0.44	0.54	0.93	0.62	1.60	0 60
	Arsenic	8 20	2.91	1.37	2 18	1.12	0.85	1,29	0.79	1.10	1.12	0.45	0.48	1.07	1.00	0 99	0 55
	Barium	İ]					
	Cadmium	1.20	6 92	1.00	1.25	0.83	4.58	3.67	1.17	6.33	6.33	0.67	2.67	5.25	2.17	3.50	0.43
	Chromium	81.0	5.72	4.96	2.85	3.58	1.11	1.23	1.04	1,13	1.43	0.39	0.46	1.13	1.20	1,32	0.73
	Copper	34.0	75.0	39.7	19.4	1071	48.5	12.6	6.82	26 2	22.8	7.97	5 53	13.6	113	10.6	5.09
	Mercury	0.15	2.87	5.13	8.00	3.13	1.47	2.13	2.47	1.87	3.27	1.07	1.03	1.87	1.87	1.80	1.13
	Nickel	20.9	15.2	2.58	1.79	18.5	3.86	2.35	1.78	2.83	4.13	1.00	1.08	2.49	3.03	2.08	1.00
	Lead	46.7	70.4	15.1	3.38	567	33.6	8,63	3.88	20.0	17.8	7.64	5.32	11.0	10.8	8 49	0.91
	Zinc	150	8.93	2.68	1.95	15.5	5.00	3.39	1.93	4.47	4.51	1.21	1.82	3.50	2.42	2.93	1.14
	Metals Hazard Index ²		190	75.5	43.8	1683	100	36.8	21.3	65.3	62.3	20.8	18.9	40.8	34.4	31.3	11.6
PAHs	2-Methylnaphthalene	70.0	14.3	9.43	B.43	9.43	10.1	9.29	9.43	14.3	24.3	8.71	8.79	14.1	9.43	+14.3	8.14
	Acenaphthene	16.0	62.5	41.3	41.3	41.3	8.75	10.0	41.3	12.5	12.5	38.1	5.31	10.0	41.3	62.5	35.6
	Acenaphthylene	44.0	4.32	4.55	15.0	15.0	7.95	7 50	2.95	9.32	10.0	3.18	3.75	7.73	2.50	4.55	1.91
	Anthracene	85.3	1.41	2.23	7.74	7.74	6.10	6.10	1.64	7.97	7.50	2.93	3.58	6.68	1.76	3.52	1.41
	Benzo(a)anthracene	261	5.75	2.15	0.73	2.53	9.58	10.3	2.57	15.3	14.6	3.07	5.56	11.1	3.41	6.51	1.65
	Benzo(a)pyrene	430	3.95	1.53	0.53	0.28	5.58	5.12	1.49	9.30	8 37	1.84	3.26	6.74	2.23	4.42	1.09
	Chrysene	384	7.29	2.21	1.04	0.47	104	10.4	2.60	26.0	24.0	3.13	5.21	11.7	4.17	8.85	2.34
	Dibenz(a,h)anthracene	63.4	4.10	3.00	1.17	10.4	7.26	8.36	3.00	17.4	15.8	5.05	5.44	14.8	4.89	9.46	2.37
	Fluoranthene	600	1.58	0 78	0.65	1.10	2.33	7.00	0.63	15.2	14.0	1.00	1.49	3.00	1.12	1.83	1.37
	Fluorene	19.0	73.7	38.4	116	57.9	200	205	52.1	279	253	57.9	103	232	63.2	121	28.4
	Naphthalene	160	1.50	4.13	4.13	4.13	2.69	3 25	0.75	3.81	3.44	1.00	1.69	3.44	1.00	1.94	3.56
	Phenanthrene	240	18.8	5.00	1.38	1.17	23.3	18.75	6.25	458	45.8	6.25	14.4	32.9	10.0	20.4	3.58
	Pyrene	665	1.50	0 99	0.99	0.99	0.29	0.39	0.99	0.33	0.54	0.11	0.21	0.33	0.12	0.20	0.86
	PAH Hazard Index ²		201	116	95.6	152	294	302	126	456	433	132.3	161	354	145	260	92.3
PCBs	Total PCBs	22.7	1193	265	10.9	13973	913	104	42.8	382	205	107	55.8	181	214	105	4.61
	Sum of Aroclors																
PST	p.p'-DDE	2.20				1.64		3.27		ĺ			2.45				

Hazard Quotients calculated as sediment concentration/benchmark.

Shaded cells indicate HQs and HIs>1.

See Appendix A-1-1 for sediment concentrations.

^{1 -} All benchmarks from Long et al., 1995.

^{2 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

Appendix A-2-1.2. Hazard Quotients (HQs) and Hazard Indices (HIs) for contaminants in sediments for the Raymark study area. Benchmark = ER-M reference data.

Chemical Class	Analyte	ה-א- בא-אי	A3SD10	CSD1	GM08	НВЗА	SD01	SD07	SD08	SD13	SD14	SD18	SD21	SD23	SD24	SD28	SD37
Metals	Silver	3.70	0.54	0.81	0.81	0.65	0.38	0.41	0.38	0 38	0.24	0.12	0.14	0.25	0.17	0 43	0.16
	Arsenic	70.0	0.34	0.16	0.26	0.13	0.10	0.15	0 09	0 13	0 13	0.05	0.06	0.13	0 12	0 12	0 06
	Barium															ĺ	
	Cadmium	906	9.2E-3	1.3E-3	1.7E-3	1.1E-3	6.1E-3	4.9E-3	1.5E-3	8.4E-3	8 4E-3	8 8E-4	3.5E-3	7.0E-3	2 9E-3	4 6E-3	5 6E-4
	Chromium	370	1.25	1.09	0.62	0.78	0.24	0.27	0.23	0.25	0.31	0.09	0.10	0.25	0.26	0.29	0.16
	Copper	270	9.44	5.00	2.45	135	6.11	1.59	0 86	3.30	2.87	1.00	0.70	1,71	1.42	1.34	0.64
	Mercury	0.71	0.61	1.08	1.69	0.66	0.31	0.45	0.52	0.39	0 69	0.23	0.22	0.39	0.39	0.38	0.24
	Nickel	51.6	6.14	1.D5	0.72	7.48	1.56	0.95	0.72	1.15	1.67	0.40	0.44	1.01	1.23	0.84	0.41
	Lead	218	15.1	3.22	0.72	122	7,20	1.85	0.83	4.28	3.82	1,64	1.14	2.36	2 32	1.39	0.19
	Zinc	410	3.27	0.97	0.71	5.86	1.83	1.24	0.71	1.64	1.65	0.44	0.67	1.28	0.89	1.07	0.42
	Metals Hazard Index ²		36.7	13.4	7.99	272	17.7	6.92	4.34	11.5	11.4	3.97	3.46	7.39	6.80	5.86	2.29
PAHs	2-Methylnaphthalene	670	1.49	0.99	0.99	0.99	1.06	0.97	0.99	1.49	2.54	0.91	0.92	1.48	0.99	-1.49	0.85
	Acenaphthene	500	2.00	1,32	1,32	1.32	0.28	0.32	1.32	0.40	0.40	1.22	0.17	0.32	1.32	2.00	1.14
	Acenaphthylene	640	0.30	0.31	1.03	1.03	0.55	0.52	0.20	0.64	0.69	0.22	0.26	0.53	0.17	0.31	0 13
	Anthracene	1100	0.11	0.17	0.60	0.60	0.47	0.47	0.13	0 62	0.58	0.23	0.28	0.52	0.14	0 27	0.11
	Benzo(a)anthracene	1600	0.94	0.35	0.12	0.41	1.56	1.69	0.42	2.50	2.38	0.50	0.91	1.81	0.56	1.06	0.27
	Benzo(a)pyrene	1600	1.06	0 41	0.14	0.08	1,50	1.38	0.40	2 50	2.25	0.49	0.88	1.81	0.60	1.19	0.29
	Chrysene	2800	1.00	0.30	0.14	0.06	1.43	1.43	0.36	3.57	3.29	0.43	0.71	1.61	0.57	1.21	0.32
	Dibenz(a,h)anthracene	260	1.00	0 73	0.28	2.54	1.77	2.04	0.73	4.23	3.85	1.23	1.33	3.62	1.19	2.31	0.58
	Fluoranthene	5100	0.19	0.09	0.08	0.13	0.27	0.82	0.07	1.78	1.65	0.12	0.18	0.35	0.13	0.22	0.16
	Fluorene	540	2.59	1.35	0.41	2.04	7.04	7.22	1.83	9.81	8.89	2.04	3.61	8.15	2.22	4.28	1.00
	Naphthalene	2100	0.11	0.31	0.31	0.31	0.20	0.25	0.06	0.29	0.26	0.08	0.13	0.26	0.08	0.15	0.27
	Phenanthrene	1500	3.00	0.80	0.22	0.19	3.73	3.00	1.00	7.33	7.33	1.00	2.30	5.27	1.60	3.27	0.57
	Pyrene	2600	0.38	0.25	0.25	0.25	0.07	0.10	0.25	0.08	0.14	0.03	0.05	0.08	0.03	0.05	0.22
i	PAH Hazerd Index ²		14.2	7.40	5.90	9.95	19.9	20.2	7.76	35.3	34.2	8.49	11.7	25.8	9.60	17.8	5.92
PCBs	Total PCBs	180	150	33.4	1.37	1762	115	13.1	5.37	48.1	25.8	13.5	7.04	22.9	27.0	13.2	0 58
	Sum of Aroclors				I		,			ľ	Į	I	·		j	1	ŀ
PST	p.p'-DDE	27.0				0.13		0.27	ľ	Ì		1	0 20	1	ļ]	ľ

Hazard Quotients calculated as sediment concentration/benchmark.

Shaded cells indicate HQs and HIs>1.

See Appendix A-1-1 for sediment concentrations.

^{1 -} All benchmarks from Long et al., 1995.

^{2 -} Hazard Index calculated as sum of analyte-specific Hazard Quotients.

Appendix A-2-2.1. Hazard Quotients (HQs) and Hazard Indices (HIs) for contaminants in WHOLE porewaters for the Raymark TIE.

Chemical	Analyte	WQSV ¹²	Source	A3SD10	CSD1	GM08	нвза	SD01	SD07	SD08	SD13	SD14	SD18	SD21	SD23	SD24	SD28	SD37
Metals	Silver	0.92	а	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Arsenic	36.0	a	0 55	1 63	0 56	0 93	0.00	2.64	2.24	2.04	0 49	0 22	0 33	0 96	0 33	0.53	0 50
	Barlum	3.80	d	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0 00	0 00	0 00	0.00	0 00	0.00	0 00	0 00
	Cadmium	36.0	С	0.16	0.10	0.00	0.09	0.08	0.11	0.04	0.08	0.09	0.02	0.09	0.09	0 08	0.10	0.08
	Chromium	50 0	а	0.03	0.05	0.03	0.02	0.06	0.02	0.00	0 06	0.06	0.04	0.01	0.06	0.05	0 00	0.00
	Copper	20.5	c	3.17	3,45	2 68	29.2	5.46	2.63	1.56	2.24	2.34	0 00	2.46	1.71	2.00	2.68	2.63
	Nickel	2400	С	0 10	0.01	0 01	0 05	0 01	0.01	0 02	0 00	0 0 1	0 01	0 01	0.00	0.01	0 00	0 00
	l ead	3020	С	0 00	0 00	0.00	0 00	0.00	0.00	0 00	0 00	0.00	0 00	0 00	0.00	0 00	0 00	0 00
	Zinc	343	С	4.49	0.76	1 22	0.50	0.50	0.44	0.58	0 41	0 79	0.12	0 34	0.17	0 15	0 76	0 15
	Metals Hazard Index ⁴	7	_ 1	6.50	6.01	4 52	30.8	6.12	5.85	4.45	4.83	3.78	0.40	3.25	3.01	2.61	4.08	3.37
PAHs	2-Methylnaphthalene	1.22	•	0.00	0.00	0 00	0 00	0.00	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0.00	0 00	0 00
	Acenaphthene	1125	С	0.00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0.00	0 00	0.00	0 00	0.00	0.00
	Acenaphthylene	0.64	•	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0.00
İ	Anthracene	0.40	e	0.00	0 00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0 00	0.00
	Benzo(a)anthracene	0.05	8	0.00	0 00	0.00	0.00	0.00	0.00	0.00	40.4	0.00	0.00	0.00	0 00	0.00	0 00	0 00
	Benzo(a)pyrene	0.027	•	0 00	0 00	0 00	0.00	0.00	0.00	0.00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0.00
	Chrysene	0.13	0	0.00	0 00	0 00	0 00	0.00	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0 00	0 00	0.00
	Dibenz(a,h)anthracene	0.013	e	0.00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00	0 00
	Fluoranthene	66 9	С	0.00	0 00	0 00	0 00	0.00	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0 00	0 00	0.00
i	Fluorene	0 14	е	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0.00	0 00	0 00	0 00	0 00	0 00
	Naphthalen e	620	ь	0.00	0 00	0.00	0 00	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0 00	0.00	0.00	0.00
	Phenanthrene	4 60	e	0.00	0 00	0.00	0 00	0.00	0.00	0.00	0 00	0.00	0.00	0 00	0 00	0 00	0.00	0 00
ļ	Pyrene	1.21	e	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0 00	0.00	0.00	0 00	0 00	0 00	0 00	0 00
	PAH Hazard Index ⁴	فاحتسا	ĺ	0.00	0 00	0 00	0 00	0.00	0.00	0 00	40.4	0.00	0.00	0.00	0 00	0 00	0 00	0 00
PCBs	Total PCBs	40.0	c	0 00	27.3	0 00	0 00	0 00	52.1	50.0	12.6	0.00	0.00	0.00	28.6	0 00	55.3	0 00

See Appendix A-1-2 for porewater concentrations

HQ=sediment porewater concentration/WQSV Blank cells indicate HQs not calculated due to non-detect or zero porewater concentrations

- 1 See text for description of WQSV derivation process.
- 2 Benchmark units: µg/L
- 3 Water Quality Screening Value (WQSV) sources
- a U.S. EPA Water Quality Criteria Saltwater Chronic (USEPA, 1986);
- b U.S. EPA Water Quality Criteria Freshwater Chronic (USEPA, 1986);
- c literature LC50 values for Ampelisca (Berry et al., 1996 (Cd, Cu, Pb, Ni, Zn), Ho et al., 1997 (PCBs));
- d literature values for Daphnids (Suter, 1996 (Ba))
- e EqP partitioning of ER-L sediment benchmark into porewater at 1% TOC
- 4 Hazard Index = class-specific sum of Hazard Quotients.

Appendix A-2-2.2. Hazard Quotients (HQs) and Hazard Indices (HIs) for contaminants in C-18 and EDTA-treated porewaters for the Raymark TIE.

Chemical Class	Analyte	WQSV ^{1,2}	Source	A3SD10	CSD1	GM08	нвза	SD01	SD07	SD08	SD13	SD14	SD18	SD21	SD23	SD24	SD28	SD37
Metals	Arsenic	36.0	а	0.02	1.14	0 06	0 03		177	1.61	0 15		0 06	0.04	0.28		1.47	0 15
]	Cadmium	36 0	С	0 26	0 24	0.18	0 14	0 09	0.15	0.16	0 10	0 13	0 03	0.12	0 13	0 10	0 26	0 16
	Chromium	50.0	а	,	7 6E-3			2.9E-2				2.1E-2	1.0E-2		1 9E-2	7.2E-3		4 2E-3
	Copper	20.5	С	1,12	0 93	1.37	4.10	0.73	1.46	0.93	1.02	0.88		0.54	1.37	0.88	1.27	1.51
j	Nickel	2400	С	2.7E-3				5.3E-3								l		
[Lead	3020	C				1 1E-3					1 5E-3		8 2E-4	1 4E-3	-		
	Zinc	343	С	7.00	0.29	1.49	0.67	0.50	0.20	0.26	0 35	0.41	0.20	0.22	0.12	0.15	0 20	0 17
j	Metals Hazard Index ⁴	1		8.40	2.60	3.09	4 95	1,36	3.58	2.96	1.63	1.43	0.30	0 91	1.92	1.13	3.20	2.01
PCBs	Total PCBs	40.0	С		I					0.65	7.48	-		_	6.31			1

See Appendix A-1-2 for porewater concentrations

HQ=sediment porewater concentration/WQSV. Blank cells indicate HQs not calculated due to non-detect or zero porewater concentrations.

- 1 See text for description of WQSV derivation process.
- 2 Benchmark units µg/L
- 3 Water Quality Screening Value (WQSV) sources.
- a U.S. EPA Water Quality Criteria Saltwater Chronic (USEPA, 1986);
- b U.S. EPA Water Quality Criteria Freshwater Chronic (USEPA, 1986).
- c literature LC50 values for Ampelisca (Berry et al., 1996 (Cd, Cu, Pb, NI, Zn), Ho et al., 1997 (PCBs));
- d literature values for Daphnids (Suter, 1996 (Ba))
- e EqP partitioning of ER-L sediment benchmark into porewater at 1% TOC
- 4 Hazard Index = class-specific sum of Hazard Quotients.

Appendix A-2-2.3. Hazard Quotients (HQs) and Hazard Indices (HIs) for contaminants in *Ulva*- and non-*Ulva*-treated porewaters collected from the Raymark study area.

					UI	va			Non-	Ulva	
Chemical Class	Analyte	WQSV ^{1,2}	Source ³	A3SD10	нвза	SD01	SD28	A3SD10	НВЗА	SD01	SD28
	Arsenic	36.0	а	0.52	0.56	0.02	0.22	0.66	0.71	0.07	0.41
	Cadmium	36.0	С	0.13	0.06	0.07	0.08	0.14	0.08	0.09	0.07
	Chromium	50.0	а								
	Copper	20.5	c	3.41	18.1	1.95	3.12	2.00	30.6	1.37	2.59
	Nickel	2400	С								
	Lead	3020	c								
	Zinc	343	С	0.35	1.55	0.20	0.15	0.23	2.65	0.23	0.29
PCBs	Total PCBs	40.0	С			0.52				0.16	

See Appendix A-1-2 for porewater concentrations.

HQ=sediment porewater concentration/WQSV. Blank cells indicate HQs not calculated due to non-detect or zero porewater concentrations.

- 1 See text for description of WQSV derivation process.
- 2 Benchmark units: µg/L.
- 3 Water Quality Screening Value (WQSV) sources:
- a U.S. EPA Water Quality Criteria Saltwater Chronic (USEPA, 1986);
- b U.S. EPA Water Quality Criteria Freshwater Chronic (USEPA, 1986);
- c literature LC50 values for Ampelisca (Berry et al., 1996 (Cd, Cu, Pb, Ni, Zn); Ho et al., 1997 (PCBs));
- d literature values for Daphnids (Suter, 1996 (Ba)).
- e EqP partitioning of ER-L sediment benchmark into porewater at 1% TOC
- 4 Hazard Index = class-specific sum of Hazard Quotients.

Appendix A-2-3. Hazard Quotients (HQs) for *Ampelisca* and *Mulinia* exposed to ammonia in sediment porewaters from the Raymark study area.

Treat	Class	Analyte	Benchmark ^{1,2}	A3SD10	CSD1	GM08	нвза	SD01	SD07	SD08	SD13	SD14	SD18	SD21	SD23	SD24	SD28	SD37
PW	AMPAM	Total Ammonia	30 0	0.65	0 55	0 41	0 53	1 14	1 05	0 98	1.23	0 91	1 47	1.19	0.78	0.78	0 77	1 65
		Un-ionized Ammonia	0 40	0 30	0 84	0 16	0 32	0 75	1 60	0 89	1 03	0 68	0 23	0 70	1 29	0 94	1 27	201
	MULAM	Total Ammonia	13.4	1 46	1 23	0 92	1.19	2.56	2.34	2.19	2 76	2 05	3 29	2 65	1.75	1 74	1.72	3 70
		Un-ionized Ammonia	0.09	1.31	3 72	0 70	1.41	3.34	7.12	3.96	4.59	3 04	1 02	3 09	5.71	4.17	5.64	8 94
ULVA	AMPAM	Total Ammonia	30.0	0 05	0 02	0 00	0.05	0 04	0.06	0.02	0 02	0 05	0 14	0 03	0 09	0.03	0 03	0 10
		Un-ionized Ammonia	0 40	0 04	0 08	0 01	0.07	0 08	0.23	0 07	0 06	0.11	0.23	0 09	0 10	0.08	0 09	0 27
	MULAM	Total Ammonia	13.4	0 10	0 04	0.01	0.12	0 08	0.14	0.04	0.05	0.11	0.31	0 07	0 21	0 06	0 06	0.22
		Un-ionized Ammonia	0.09	0 16	0.35	0 05	0 29	0.35	1.03	0 32	0 26	0.49	1.03	0.41	0.46	0 34	0 40	1.20

AMPAM=Ampelisca; MULAM=Mulinia.

Benchmark units: mg/L

1 - Benchmark for Ampelisca NOEC = No Observable Effect Concentration

2 - Benchmark for Mulinia larval Development. LOEC (Carr, et al., 1996)

3 - Hazard Index = sum of class-specific Hazard Quotients

Appendix Table B-1.1. Ampelisca survival in whole porewater from the Raymark study area.

			Co	ncentration	Porewate	r (%)		LC50 ²	LC20 ³
Station	Me thod⁴	01	6.25	12.5	25	50	100	(%)	(%)
A3SD10	а	100	100	100	100	86.7	73.3	>100	77.3
CSD1	a	100	100	100	93.3	100	53.3	>100	64.3
GM08	С	100	100	100	100	100	66.7	>100	80.0
HB3A	С	100	86.7	100	93.3	100	40.0	91.7	66.7
SD01	b	100	100	100	100	66.7	0.00	56.1	40.0
SD07	ь	100	100	100	100	100	0.00	70.7	60.0
SD08	а	100	100	86.7	93.3	86.7	0.00	59.2	43.5
SD13	b	100	100	93.3	100	100	0.00	70.7	60.0
SD14	b	100	100	93.3	100	100	0.00	70.7	60.0
SD18	b	100	100	100	80.0	0.00	0.00	31.0	25.0
SD21	С	100	100	100	100	100	6.67	76.8	60.7
SD23	ь	91.7	100	100	100	100	0.00	70.7	60.0
SD24	Ь	93.3	93.3	100	100	80.0	0.00	62.7	51.7
SD28	С	100	100	100	100	100	100	>100	100
SD37	b	91.7	100	93.3	80.0	100	0.00	41.4	28.1

Shading indicates values excluded from calculations.

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Lethal Concentration 50% (concentration of porewater causing 50% reduction in survival).
- 3 Lethal Concentration 20% (concentration of porewater causing 20% reduction in survival).
- 4 Calculation method:
- a LC50 and LC20 calculated using Maximum Likelihood-Probit method.
- b LC50 calculated using Trimmed Spearman-Karber method; LC20 calculated using Linear Interpolation (IC20).
- c LC50 and LC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-1.2. Mulinia normal larval development in whole porewater from the Raymark study area.

			Co	ncentration	Porewater	(%)		EC50 ²	EC20 ³
Station	Method⁴	0¹	6.25	12.5	25	50	100	(%)	(%)
A3SD10	а	97.7	2.00	0.33	0.00	0.00	0.00	0.91	0.41
CSD1	а	97.7	90.0	49.0	12.3	0.00	0.00	17.3	11.7
GM08	а	96.0	96.3	89 .0	12.7	0.00	0.00	18.5	14.8
HB3A	а	95.7	93.0	20.7	0.00	0.00	0.00	10.2	8.26
SD01	а	95.3	92.0	49.7		0.00	0.00	12.7	9.21
SD07	а	96.3	85.0	24.7	0.00	0.00	0.00	9.73	7.20
SD08	а	97.0	41.3	10.7	92.0	0.00	0.00	5.55	3.20
SD13	а	97.0	91.7	84.3	67.0	21.3	0.00	32.4	20.7
SD14	а	96.7	88.3	82.7		0.00	0.00	17.1	13.8
SD18	С	93.0	0.00	0.00		0.00	0.00	3.13	1.25
SD21	а	98.0	78.3	56.7	0.00	0.00	0.00	11.4	7.58
SD23	С	94.7	89.0	83.3	78.7	67.0	0.00	64.7	31.3
SD24	а	98.3	92.0	89.0	28.3	3.67	0.00	21.2	14.9
SD28	С	96.0	94.7	96.3	91.0	86.7	0.00	72.3	55.7
SD37	a	95.3	88.7	12.0	0.00	0.00	0.00	9.23	7.39

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Effect Concentration 50% (concentration of porewater causing 50% reduction in test response).
- 3 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 4 Calculation method:
- a EC50 and EC20 calculated using Maximum Likelihood-Probit method.
- b EC50 calculated using Trimmed Spearman-Karber method; EC20 calculated using Linear Interpolation (IC20).
- c EC50 and EC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-2.1. *Ampelisca* survival in C-18 treated porewater from the Raymark study area.

		Co	ncentration	Porewater (%)	LC50 ²	LC20 ³
Station	Method⁴	0,	10	50	100	(%)	(%)
A3SD10	С	100	100	100	90.0	>100	100.0
CSD1	С	100	100	100	70.0	>100	83.3
GM08	С	100	100	100	100	>100	100.0
НВЗА	a	100	100	30.0	40.0	52.2	22.7
SD01	ь	100	100	90.0	0.00	63.0	55.6
SD07	С	100	100	100	70.0	>100	83.3
SD08	С	80.0	100	100	0.00	75.0	60.0
SD13	ь	90.0	100	100	0.00	70.7	60.0
SD14	ь	100	100	100	0.00	70.7	60.0
SD18	ь	100	100	0.00	0.00	22.4	18.0
SD21	С	100	100	100	0.00	75.0	60.0
SD23	ь	100	100	100	0.00	70.7	60.0
SD24	b	100	100	100	0.00	70.7	60.0
SD28	c	100	100	100	100	>100	100
SD37	С	100	90.0	90.0	0.00	68.0	55.0

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Lethal Concentration 50% (concentration of porewater causing 50% reduction in survival).
- 3 Lethal Concentration 20% (concentration of porewater causing 20% reduction in survival).
- 4 Calculation method:
- a LC50 and LC20 calculated using Maximum Likelihood-Probit method.
- b LC50 calculated using Trimmed Spearman-Karber method; LC20 calculated using Linear Interpolation (IC20).
- c LC50 and LC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-2.2. *Mulinia* normal larval development in C-18 treated porewater from the Raymark study area.

		C	oncentration	%)	EC50 ²	EC20 ³	
Station	Method ⁴	01	10	50	100	(%)	(%)
A3SD10	С	9 6 .0	2.33	0.00	0.00	5.12	2.05
CSD1	c	93.3	17.3	0.00	0.00	6.14	2.46
GM08	a	95.3	89.7	33.0	47.0	57.7	15.9
HB3A	С	88.0	90.7	0.00	0.00	30.0	18.0
SD01	c	95.3	96.0	0.00	0.00	30.0	18.0
SD07	С	97.7	23.3	0.00	0.00	6.57	2.63
SD08	c	96.3	34.0	0.00	0.00	7.73	3.09
SD13	С	96.3	92.7	0.00	0.00	29.2	16.7
SD14	С	94.0	92.3	0.00	0.00	29.6	17.4
SD18	С	89.7	94.0	22.3	0.00	36.4	20.6
SD21	С	92.7	89.7	0.00	0.00	29.3	16.9
SD23	a	94.7	93.0	73.3	64.3	>100	49.2
SD24	а	97.7	94.0	58.0	0.00	52.1	45.7
SD28	а	97.7	93.7	69.7	3.33	59.5	46.8
SD37	С	97.3	82.7	0.00	0.00	12.8	10.5

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Effect Concentration 50% (concentration of porewater causing 50% reduction in test response).
- 3 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 4 Calculation method:
- a EC50 and EC20 calculated using Maximum Likelihood-Probit method.
- b EC50 calculated using Trimmed Spearman-Karber method; EC20 calculated using Linear Interpolation (IC20).
- c EC50 and EC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-3.1. *Ampeiisca* survival in EDTA-treated porewater from the Raymark study area.

		Co	oncentration	LC50 ²	LC20 ³		
Station	Method⁴	01	10 -	50	100	(%)	(%)
A3SD10	С	100	100	100	100	>100	100
CSD1	С	100	100	100	50.0	>100	70.0
GM08	а	100	100	90.0	80.0	>100	100
HB3A	С	90.0	100	100	0.00	75.0	60.0
SD01	ь	100	100	100	0.00	70.7	60.0
SD07	b	100	100	100	20.0	77.1	62.5
SD08	С	100	100	100	0.00	75.0	60.0
SD13	ь	100	100	100	0.00	70.7	60.0
SD14	b	100	100	90.0	0.00	63.0	55.6
SD18	b	100	100	0.00	0.00	22.4	18.0
SD21	C	100	100	100	0.00	75.0	60.0
SD23	ь	87.5	90.0	100	0.00	70.7	60.0
SD24	b	100	100	100	10.0	73.5	61.1
SD28	С	100	100	100	90 .0	>100	100
SD37	b	100	90.0	100	0.00	69.4	57.9

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Lethal Concentration 50% (concentration of porewater causing 50% reduction in survival).
- 3 Lethal Concentration 20% (concentration of porewater causing 20% reduction in survival).
- 4 Calculation method:
- a LC50 and LC20 calculated using Maximum Likelihood-Probit method.
- b LC50 calculated using Trimmed Spearman-Karber method; LC20 calculated using Linear Interpolation (IC20).
- c LC50 and LC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-3.2. *Mulinia* normal larval development in EDTA-treated porewater from the Raymark study area.

		C	oncentration	EC50 ²	EC20 ³		
Station	Method ⁴	01	10	· 50	100	(%)	(%)
A3SD10	С	98.3	95.3	0.00	0.00	29.4	17.0
CSD1	С	95.3	78.7	0.33	0.00	25.8	11.2
GM08	С	94.7	97.7	87.7	20.7	79.5	58.0
HB3A	С	95.7	92.7	0.00	0.00	29.4	16.9
SD01	С	97.7	91.7	0.00	0.00	28.7	15.9
SD07	С	94.7	92.3	0.00	0.00	29.5	17.2
SD08	С	95.7	25.0	0.00	0.00	6.77	2.71
SD13	С	93.7	93.0	0.00	0.00	29.9	17.8
SD14	С	99.0	93.0	0.00	0.00	28.7	15.9
SD18	С	99.0	0.00	0.00	0.00	5.00	2.00
SD21	С	95 .7	88 .0	0.00	0.00	28.3	15.2
SD23	С	94.0	79.3	0.00	0.00	26.3	12.1
SD24	b	96.3	96.3	26.7	0.00	30.8	21.1
SD28	a	96.3	93.3	85 .3	5.67	68.4	55.7
SD37	С	93.7	76.3	0.00	0.00	25.5	10.7

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Effect Concentration 50% (concentration of porewater causing 50% reduction in test response).
- 3 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 4 Calculation method:
- a EC50 and EC20 calculated using Maximum Likelihood-Probit method.
- b EC50 calculated using Trimmed Spearman-Karber method; EC20 calculated using Linear Interpolation (IC20).
- c EC50 and EC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-4.1. Ampelisca survival in Ulva-treated porewater from the R_ymark study area.

			LC50 ²	LC20 ³					
Station	Method ⁴	0'	6.25	12.5	25	50	100	(%)	(%)
A3SD10	С	100	100	100	100	100	100	>100	100
CSD1	С	100	100	100	100	100	100	>100	100
GM08	С	100	100	100	100	93.3	100	>100	100
нвза	a	100	93.3	93 .3	100	53 .3	0.00	45.5	24.0
SD01	a	100	100	100	100	93.3	60 .0	>100	72.8
SD07	c	100	100	100	100	100	100	>100	100
SD08	С	100	100	100	100	100	100	>100	100
SD13	С	100	100	100	100	100	100	>100	100
SD14	a	100	100	100	93.3	66.7	53.3	93.8	43.6
SD18	а	100	100	80.0	77.5	65.0	0.00	40.8	20.0
SD21	а	100	100	100	100	66.7	45 .0	80.8	46.9
SD23	С	100	100	100	100	100	93.3	>100	100
SD24	c	100	100	100	100	100	93.3	>100	100
SD28	c	100	100	100	100	100	100	>100	100
SD37	c	100	100	100	100	100	93.3	>100	100

- 1 Control value for experiment, assumed for all treatments, is 0% porewater.
- 2 Lethal Concentration 50% (concentration of porewater causing 50% reduction in survival).
- 3 Lethal Concentration 20% (concentration of porewater causing 20% reduction in survival).
- 4 Calculation method:
- a LC50 and LC20 calculated using Maximum Likelihood-Probit method.
- b LC50 calculated using Trimmed Spearman-Karber method; LC20 calculated using Linear Interpolation (IC20).
- c LC50 and LC20 calculated using Linear Interpolation (IC50 and IC20).

Appendix Table B-4.2. Mulinia normal larval development in Ulva-treated porewater from the Raymark study are

Station		Concentration Porewater (%)							EC20 ³
	Method ⁴	01	6.25	12,5	25	50	100	EC50 ² (%)	(%)
A3SD10	С	95.7	0.00	0.00	0.00	0.00	0.00	3.13	1.25
CSD1	c	95.7	5.00	6.00	0.00	0.00	0.00	6.67	2.67
GM08	c	95.7	0.00	0.00	0.00	0.00	0.00	3.13	1.25
HB3A	c	95.7	0.33	0.00	0.00	0.00	0.00	3.14	1.25
SD01	а	95.7	0.33	16.7	12.7	0.00	0.00	5.28	2.14
SD07	а	95.7	0.00	10.3	4.33	0.00	0.00	3.80	1.64
SD08	а	95.7	7.50	62.0	47.5	1.00	0.00	19.0	11.1
SD13	a	95.7		66.0	46.5	17.5	0.00	21.4	10.8
SD14	a	95.7	į	64.0	41.0	3.50	1.00	18.6	10.3
SD18	а	95.7		44.0		21.0	0.00	12.0	5.91
SD21	С	95.7	0.33	0.00	0.00	0.00	0.00	3.14	1.25
SD23	а	95.7	6.33	4.00	0.00	0.00	0.00	1.08	0.38
SD24	С	95.7	0.00	9.67	0.00	0.00	0.00	6.95	2.78
SD28	a	95.7	F - Compression Co. 1	67.0	61.0	0.00	0.00	22.3	13.8
SD37	а	95.7	35.0	27.7	4.00	0.33	0.00	5.23	2.24

Shading indicates values excluded from calculations.

- 1 Control value for experiment, assumed for all treatments, is 0% porewater. No control data available for Ulva treatment; control value taken as average of controls from whole, EDTA, and C18 treatments.
- 2 Effect Concentration 50% (concentration of porewater causing 50% reduction in test response).
- 3 Effect Concentration 20% (concentration of porewater causing 20% reduction in test response).
- 4 Calculation method:
- a EC50 and EC20 calculated using Maximum Likelihood-Probit method.
- b EC50 calculated using Trimmed Spearman-Karber method; EC20 calculated using Linear Interpolation (IC20).
- c EC50 and EC20 calculated using Linear Interpolation (IC50 and IC20).